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Executive Summary

The security mechanisms deployed on modern mobile handsets significantly hinder forensic ana-
lysts seeking to recover device data. This has particular importance to law enforcement agencies
(LEAs) where valuable evidence is protected by such mechanisms that could be used to facili-
tate criminal investigations. On today’s devices, secure boot sequences prevent the introduction
of unauthorised firmware, while TEEs provide hardware-assisted isolation of cryptographic keys
and applications that may be used to conceal data of interest.

This report details a white-box model for LEAs and forensic analysts to develop forensic extrac-
tion methods for TEE-equipped mobile devices. The developed platform supports a variety of
common mechanisms, including secure boot, a TEE based on the ARM TrustZone architecture,
and encrypted secure storage. The platform conforms to the GlobalPlatform TEE specifications
that govern today’s mobile device TEEs. Moreover, the platform is built from open-source com-
ponents that can be readily inspected, modified and redeployed in order to explore potential
weaknesses and prototype extraction techniques. At its core, the platform uses the OP-TEE
framework originally developed by ST-Ericsson and maintained by the Trusted Firmware project,
comprising major industry players, such as ARM, Google, NXP, and STMicroelectronics. Our
testbed platform is deployed on a development board based on the ARM architecture, used by
most of today’s mobile devices, and specifically uses a system-on-chip used by several Huawei
smartphone models.
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Chapter 1

Introduction

1.1 Background

Mobile digital forensics is concerned with the recovery of device data from mobile devices, such
as smartphones and tablets, to assist in forensic investigations. However, data extraction meth-
ods have substantially increased in difficulty due to the growing complexity of mobile platforms.
In today’s world, mobile devices contain a range of security mechanisms based on a combination
of cryptographic techniques, e.g., encryption and digital signature verification, and hardware-
enforced access control. These mechanisms continue to significantly impede the efforts of law
enforcement agencies (LEA) when attempting to recover valuable evidence for serious criminal
investigations [1, 18, 73].

A significant hindrance has been the widespread deployment of trusted execution environments
(TEEs) that provide hardware-assisted isolation of data and applications. TEEs underpin a range
of security-related mobile services, including cryptographic key management, full-disk encryption,
user authentication, and encrypted secure storage of arbitrary data objects. TEEs aim to defend
against privileged software adversaries in the native operating system (OS). Consequently, even
gaining root access to the native OS cannot subvert these security mechanisms, which can be
used to conceal evidence from LEAs.

This report presents a white-box platform to assist with the research and development of forensic
extraction techniques on today’s mobile devices. The platform, which closely replicates a modern
mobile architecture and its security mechanisms, is built to facilitate research on TEEs and its
applications. The software components of our platform are open-source: they can be inspected,
modified and redeployed to analyse weaknesses in security mechanisms and develop new ex-
traction techniques. The platform is built with ARM-based system-on-chips (SoCs) in mind that,
as established in the D1.1 market study [21], are used ubiquitously by the major smartphone
vendors at the time of writing. It implements a variety of common security mechanisms, including
authenticated secure boot, an ARM TrustZone-based TEE using an open-source security kernel
from the OP-TEE project, and TEE-backed secure storage and key management. Moreover, the
test-bed conforms to the GlobalPlatform specifications that govern the use of device TEEs used
by original equipment manufacturers (OEMs). From a firmware perspective, the open-source
Trusted Firmware project is used—a widely used reference implementation of the secure boot
chain and the TEE secure monitor, which is developed by ARM. We have deployed the platform
on an ARM development board that replicates a modern mobile platform and uses a SoC found
on several Huawei smartphone models.

EXFILES D3.1 Public Page 1 of 45



D3.1 - TEE Security Study

1.2 Report Organisation

The coming chapters describe ARM-based TEEs and their specifications, before presenting tech-
nical details regarding the features and limitations of the proposed research platform. Specifically,
Chapter 2 provides preliminary information about system-on-chips, TEEs, their governing spec-
ifications and initialisation through an authenticated secure boot procedure. Chapter 3 then ex-
amines common security mechanisms found on modern mobile devices, including those that are
enhanced by TEEs, such as the Android Keystore, remote attestation, and full-disk encryption.
Following this, Chapter 4 presents the design and development of a white-box model for con-
ducting research and prototyping forensic extraction techniques against a platform that closely
resembles a modern mobile device. Finally, Chapter 5 summarises and concludes this report.
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Chapter 2

Mobile Trusted Execution Environments

This chapter introduces mobile TEEs in greater technical detail, their governing specifications and
typical platform configurations. It begins with a recap of system-on-chips (SoCs) first introduced
in D1.1 (§3.3, [21]), before discussing ARM TrustZone, the GlobalPlatform specifications, and
leading proprietary TEE-based systems developed by major mobile OEMs.

2.1 System-on-Chips (SoCs): An Overview

A system-on-chip (SoC) is an integrated circuit comprising most components of a computing
system, such as the multiple application processor cores, memory units (RAM, ROM, and flash
memory), system buses, timers, analog-to-digital and digital-to-analog converters (ADCs and
DACs), and integrated graphics processing units (GPUs). Because of their integrated nature,
current mobile devices are underpinned by SoCs because of their power efficiency and small
physical footprint. In general, a SoC’s precise components and capabilities varies between ven-
dors. At the time of writing, leading SoC vendors include Apple, Samsung, Qualcomm, MediaTek,
Broadcom, Texas Instruments, and Huawei. The reader is referred to Table 9 in D1.1 [21] for a
comprehensive list of SoCs used by modern mobile devices.

The hardware design of modern mobile device SoCs is based heavily around the configuration
of reusable semiconductor building blocks. These blocks, known formally as intellectual propriety
(IP) blocks or IP cores, are built directly by the silicon vendor and/or licensed from a third party,
such as ARM. By selecting and configuring particular IP blocks, certain features can be provided
by the SoC, such as high-performance video processors, security-aware memory controllers, and
cryptographic co-processors. The configuration and implementation details of modern mobile
SoC IP cores, e.g. Verilog or VHDL code, lies primarily outside the public domain. The closed
nature of IP cores and modern hardware design in general has catalysed open-source move-
ments, such as the RISC-V initiative [59]. However, mobile devices with open-source hardware
are not readily available on the mass market.

2.2 ARM TrustZone

ARM TrustZone (TZ) is a set of security extensions that are built from a suite of hardware IP cores
and firmware components. TrustZone is the foundation for building TEEs on ARM-based SoCs.
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2.2.1 High-Level Overview

TrustZone divides system execution into two worlds: the ‘secure’ and ‘non-secure’ worlds1 that
host security-sensitive and non-sensitive applications and services respectively. Fundamentally,
the ARM architecture uses a ‘non-secure’ (NS) bit as a control signal to denote the current world
of execution. Each logical core of modern ARM Cortex-A application processors (APs) is as-
sociated with two virtual cores for secure and non-secure world execution, which operate in a
time-sliced fashion.

During the execution of a non-secure program, A, which communicates with a secure world ap-
plication, B, the NS bit will be changed accordingly when transitions are made from A to B
and vice-versa. The NS bit is propagated through the SoC bus transactions to other compo-
nents, such as memory controllers, which can behave differently depending on the state of the
bit. A TrustZone-enabled SoC is thus aware of any unauthorised accesses of secure world-only
resources from non-secure world programs. When detected, such accesses are prevented by re-
turning the appropriate error code depending on the target component. Components that behave
differently between non-secure and secure worlds of execution are known as being ‘TrustZone-
aware’. This is shown in Figure 2.1.

Overall, the secure creation and maintenance of a TrustZone system is underpinned by the phys-
ical and software configuration of the SoC bus components. A TrustZone-enabled SoC contains
a multitude of IP blocks for enforcing access control to secure world-only peripherals, security co-
processors, static (SRAM) and dynamic RAM (DRAM) modules, and more. A sample ARM-based
SoC is shown in Figure 2.2.

2.2.2 ARM Exception Model and Secure Monitor Mode

The ARMv8-A architecture defines three software privilege exception levels for standard, non-
secure world use: EL0, EL1, and EL2 in order of increasing privilege, described as follows:

• EL0: user applications executing in the non-trusted world, equivalent to user mode on X86-
64 systems.

• EL1: higher privilege services within the non-trusted world, e.g. native operating system,
equivalent to kernel mode.

• EL2: hypervisor mode for managing virtualised operating systems.

Programs executing at lower levels are not able to access higher-level applications and services
except via tightly controlled interfaces, e.g., the system call interface (SCI) between EL0 and EL1.
This concept is expanded by ARM TrustZone to provide three additional exception levels—S-EL0,
S-EL1, and EL3—for use with the secure world. These are described below in increasing order
of privilege for ARMv8.3 and earlier AP cores:

• S-EL0: the lowest privilege level for applications executing in the secure world.

• S-EL1: secure world equivalent of kernel mode; the TEE OS kernel operates here.

• EL3: secure monitor mode for mediating the switches between the worlds of execution.

1Also known as ‘trusted’ and ‘untrusted’ worlds.
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Figure 2.1: A TrustZone-enabled ARM SoC in non-secure and secure world modes [22].

The cornerstone of the TrustZone security model is the use of the latter exception mode—secure
monitor mode at EL3—to manage world context switches for ARM Cortex-A APs2. Monitor mode
is entered using exception-generating secure monitor call (smc) instructions, which are called
from the non-secure or secure world kernels at EL1 and S-EL1 respectively. The secure monitor
performs the saving and restoration of secure and destination world contexts, such as register
states, and writes the NS bit.

For ARM AP IP cores using ARMv8.4 and beyond (2017—today), a further secure world excep-
tion level (S-EL2) was added to provide the ability for multiple TEE OSs to be hosted in an isolated
fashion. The full exception model for ARMv8.4-A APs is shown in Figure 2.3. A reference imple-
mentation of the secure monitor is provided as part of the Trusted Firmware project [43], whose
membership includes leading device manufacturers and SoC vendors, such as Google, ARM,
STMicroelectronics, NXP, Cypress (now part of Infineon), and Texas Instruments. The project
aims to provide SoC vendors and OEMs with a trusted, open-source and ARM-compliant code
base upon which secure world services can be built3.

2.2.3 TrustZone Protection Controllers

Several mechanisms are used to protect off-CPU memory and peripheral controllers used by the
secure world from non-secure world accesses. These controllers can partition RAM into secure
and non-secure regions, effectively serving as a memory firewall, and prevent unauthorised non-
secure world accesses to peripherals intended only for the secure world. Zero, one, or more of
these units might be used depending on the vendor’s security goals.

2TrustZone is also available for microcontrollers, known as TrustZone-M. However, this architecture is substantially
different to TrustZone found on modern smartphone SoCs, which is the focus of this work. The reader is referred
to [53] and [63] for a comprehensive survey of TrustZone-A and -M, and TEEs generally.

3The Trusted Firmware project serves as a reference code base, which will serve as only part of the TEE firmware
deployed on SoCs in the wild. Manufacturers may develop proprietary firmware in addition to this code base.
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Figure 2.2: A sample ARM-based system-on-chip with TrustZone awareness [11]. The trusted
world components are accessible only to the secure world, i.e. when the NS-bit=0, while non-
trusted world components can be accessed by the non-secure world. Certain components can be
configured to provide access to both worlds, but data is only returned to the calling world based
on the NS bit that are propagated in bus transactions over the SoC interconnect.
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Figure 2.3: ARM exception model for v8.4-A and beyond [10].

The TrustZone Address Space Controller (TZASC) is a programmable memory security unit, also
known as a memory firewall, for partitioning DRAM into secure and non-secure memory address
spaces. During execution, the TZASC prevents bus transactions with NS-bit=1 from accessing
secure world-only address regions. Secondly, the TrustZone Peripheral Controller (TZPC) is used
to assign protection bits to peripherals, such as those connected over UART or GPIO, to mark
them as being accessible to only the secure world, non-secure world, or both. This unit is used
with the ARM AXI-to-APB bus bridge to deny illegal accesses to peripherals intended for the
secure world when the NS bit is set (NS-bit=1). Lastly, the TrustZone Memory Adapter (TZMA)
is a configurable block for protecting static memory modules, such as secure SRAM and ROM,
intended for the secure world from unauthorised non-secure accesses using the NS bit.

For on-CPU protection, ARM Cortex-A APs provide two virtual MMUs, each for the secure and
non-secure worlds. This allows each world’s kernel to maintain local translation tables for virtual-
to-physical address mappings. The ARM L1 processor cache (the lowest) is extended to tag each
cache line as belonging to the non-secure or secure world. Translation look-aside buffer (TLB)
entries are also tagged similarly. Accesses to the cache lines or TLB entries are accepted or
denied based on the current world execution mode [13].

2.2.4 Secure Boot

Securely initialising the secure world and its requisite on-chip units is key to maintaining the secu-
rity of a TrustZone-enabled SoC. The aim of the secure boot process is to ensure the authenticity
of bootloader components when the device is first powered. This way, only authenticated com-
ponents, which are used to configure TrustZone-aware units and load the TEE kernel and its
applications, are loaded and used by the device.

The ARM secure boot procedure is underpinned by a hardware-based root of trust (RoT) that is
inherently considered to be trusted. At the heart of a RoT are the security functions it supports;
these functions provide the facility while offering a strong protection of an SoC’s product lifecycle
management during all operation phases, such as power off, power up, run time operations and
communications with external entities. The RoT supports functions as secure monitoring, secure
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validation/authentication, storage protection, secure communication and key management. The
RoT is typically implemented at the SoC level in read-only memory, which bootstraps the boot
process [44]. Modern boot sequences comprise loading a number of boot loading stages: after
receiving a reset signal, the SoC uses the boot ROM to authenticate and the other boot loader
stages in a chain of trust. These stages, shown in Figure 2.4, are as follows:

1. Boot stage 1 (BL1): resides in read-only memory, performs basic on-board processes,
such as power-on self-test (POST) and control register setup, and loads the second-level
image (BL2).

2. Boot stage 2 (BL2): used to configure non-volatile storage, S-EL1 page translation, and
loads all third-level boot images (BL3).

3. Boot stage 3-1 (BL3-1): loads the EL3 and secure monitor firmware, including interrupt
handlers, power management, TrustZone memory controllers, and the SMC interface for
world switching. Executes at EL3.

4. Boot stage 3-2 (BL3-2): loads and configures the S-EL1 payload including the secure
world kernel/OS. Executes at S-EL1.

5. Boot stage 3-3 (BL3-3): loads and passes control to the non-trusted firmware image, e.g.,
UEFI, at EL1.

On mobile devices, the bootloaders are signed by the OEM. During the boot sequence, each
bootloader veries the subsequent loader by measuring it, i.e., calculating its SHA-256, and veri-
fying this against an OEM-signed measurement using the OEM’s public key. This begins with the
boot ROM (BL1), which measures and authenticates BL2, and so on until control is finally passed
to the untrusted world kernel. As such, any unauthorised bootloaders will fail signature verifica-
tion and the component will not be loaded. This persists while the offending component exists on
the device, manifesting itself as a device bootloop when it is powered on. The authenticated boot
procedure is depicted in Figure 2.5.

A reference implementation of the secure boot process is provided by the Trusted Firmware
project [43], which vendors can tailor to particular SoCs and devices.

2.2.5 World Setups and Inter-World Communication

Following the boot process, each world is configured with its own operating system and an inde-
pendent set of applications. The non-secure OS is often called the rich or untrusted OS, while the
secure OS is sometimes known as the trusted OS. The most common rich OSs for smartphones,
which execute at EL1, are Android [7] and Apple iOS [8], as discussed in D1.1 [21]. Secure
world OSs, which execute at S-EL1, are specialist security kernels with a reduced footprint in
order to limit the scope for potential vulnerabilities. These hardened kernels are evaluated us-
ing the Common Criteria framework against the GlobalPlatform TEE protection profile, described
next in §2.3. Commercially available secure world OSs include Trustonic Kinibi [71], Huawei
iTrustee [34], Qualcomm QTEE [56], and Samsung TEEGRIS [61]. Access to secure world OSs
is, for the most part, closed source (see §4.1). Access to documentation, SDKs, and third-party
application development is typically limited to authorised personnel with an established business
relationship.
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Figure 2.4: High-level ARM boot process [11].
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Figure 2.5: Authenticated secure boot process.

The secure world OS hosts a number of trusted applications (TAs) that execute at the lowest se-
curity exception level (S-EL0). These are used for implementing security-critical services, some
of which can be used by the non-secure OS and its applications. Common services provided by
TAs on today’s mobile devices are biometric authentication and digital rights management (DRM)
enforcement, such as WideVine and PlayReady for video playback protection [42].

Non-secure applications (EL0) communicate with TAs through a system library, typically provided
by the secure OS provider. This library communicates to a corresponding secure OS driver in
the non-secure OS that enters secure monitor mode over the SMC interface. If the SMC call is
permissible, then the secure monitor firmware passes control to the secure OS that routes the
request to the intended TA. Control flow is returned to non-secure world applications using the
reverse process. This process is depicted in Figure 2.6.
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Figure 2.6: High-level inter-world communication flow for TrustZone-based systems [9].

2.3 GlobalPlatform TEE

The GlobalPlatform TEE (GP TEE) is a family of specifications that governs the use and man-
agement of TEEs, including their system architecture [27]; communication interfaces between the
non-secure and secure worlds [24]; interfaces between TAs and secure OS [28]; APIs for com-
munication between the TEE and networked devices [26]; the use of external security hardware,
such as secure elements [25]; and the protection scope that a compliant TEE must meet [30].

It is important to note that the GP TEE is a suite of security design specifications. For example, it
does not contain precise details for implementing rich OS (REE) and TEE partitioning using any
particular vendors or technologies, although TrustZone is currently the predominant method for
instantiating a GlobalPlatform TEE [67]. The salient specifications are briefly described as follows;
the reader is referred to the GlobalPlatform TEE Technology Document Library for accessing the
specifications in full [29].

• GP System Architecture: defines the high-level system architecture for a device that hosts
a GP-compliant TEE. It specifies its high-level hardware architecture and its security re-
quirements, roots of trust, multiple TEE architectures on the same device, and the scope of
each specification in the GlobalPlatform TEE family.

• GP Internal Core API: defines the interfaces and function definitions between trusted appli-
cations (TAs) and the TEE. It covers function definitions and return types for TAs to access
secure storage functionality, arithmetic and cryptographic operations, and sources of time.

• GP Client API: specifies the interfaces and function definitions by which non-secure world
applications should communicate with the TEE. It specifies data types and function defini-
tions for resource initialisation, TA connection interfaces, multi-threading, and establishing
shared secure memory regions.
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• GP Protection Profile: used for assessing GP TEE-based targets of evaluation (TOE)
under the Common Criteria framework.

• GP Sockets API: specifies how TEEs open socket connections directly from the secure
world over UDP/IP and TCP/IP including TLS. The APIs define return types, function defi-
nitions, and supported algorithms for secure socket connections.

• GP TA Debug API: defines data types, function interfaces and data structures for debug-
ging TAs, including post-mortem reporting and debug log messages.

• GP TEE Management Framework: defines mechanisms, such as security protection do-
mains, by which the TEE and TAs can be securely hosted and managed by distinct providers
and stakeholders.

2.3.1 Architecture

Like TrustZone, the GP TEE divides execution into trusted and untrusted worlds. The trusted
world may host one or more TEEs, which themselves host an independent set of secure OSs
and TAs. The untrusted world hosts a non-secure operating system, e.g., as Android, with its
own set of untrusted applications. TAs communicate with the TEE OS using the GP Internal API,
while two methods exist for enabling data transfers between a TEE TA and a REE client applica-
tion. The first method is using the GP Client API, which defines interfaces for a REE application
to access a TEE TA by passing messages over a hardware-assisted secure monitor, such as
the ARM TrustZone secure monitor interface. The secure world kernel then securely routes the
messages to the target TA. Secondly, TAs may establish shared memory buffers directly with a
REE application.

The specifications stipulate that the TEE must be protected by a secure boot process, as de-
scribed in §2.2.4, where the TEE image and its bootloaders are authenticated starting with an
immutable root of trust, such as SoC ROM. Moreover, the TEE must implement trusted storage
with device binding, where TEE assets can be stored securely from an untrusted REE, and can-
not be accessible if the TEE is migrated to another device. This protection method must be “at
least equal to that of the TEE environment” [27]. The specifications provide support for encrypting
TEE data to an untrusted filesystem using authenticated encryption under a TEE file encryption
key derived from a hardware unique key. It also supports the use of an external secure element
that only the TEE can access in order to store data, e.g., cryptographic keys. The high-level
architecture of the GP TEE is shown in Figure 2.7.

2.3.2 Threat Model and Protection Scope Overview

The GP TEE aims to protect against sophisticated software adversaries that originate from the
REE. The GP TEE Protection Profile (GP TEE PP), which is used for a target of evaluation(TOE)
based on the GP TEE “targets threats to the TEE assets that arise during the end-usage phase
and can be achieved by software means...focuses on non destructive software attacks that can
be easily widespread...and constitute a privileged vector for getting undue access to TEE assets
without damaging the device itself” [30].
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Figure 2.7: System architecture of a REE and GP-defined TEE (GPD TEE) [27].
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In hardware, a GP TEE should have access to a secure clock, cryptographic accelerators, and
volatile and non-volatile memory. The GP TEE must be able to access resources without trust-
ing the REE. More generally, the GP TEE should be self-contained and be dependent on any
software or firmware components in the non-secure world for secure use. In software terms, the
root(s) of trust, including the initial bootloader code; the TEE kernel; and the TAs are considered
trusted. Errors in any of these components, such as the functions TAs expose to non-secure client
applications, may compromise the intended services that the TEE and its TAs aims to provide.

The GP TEE PP provides an explicit list of GP TEE assets and the security properties that should
be upheld. The security matrix of requirements and TEE assets is reproduced from [30] and [63]
in Table 2.1. The GP TEE PP defines an on-device and remote attacker that should be defended
against as a minimum requirement. In general, the TEE protects against low-cost, low-expertise
physical attacks; the protections “will be at a lower level than that provided to dedicated tamper
resistant technology” [27]. The defined attacker models are reproduced as follows:

• Basic remote attacker: “Performs the attack on a remotely-controlled device or alterna-
tively makes a downloadable tool that is very convenient to end-users. The attacker re-
trieves details of the vulnerability identified in the identification phase and [...] makes a
remote tool or malware and uses techniques such as phishing to have it downloaded and
executed by a victim [in the untrusted world].”

• Basic on-device attacker: “Has physical access to the target device; it is the end-user
or someone on his behalf. The attacker is able to retrieve exploit code, guidelines writ-
ten on the internet on how to perform the attack, and downloads and uses tools to jail-
break/root/reflash the device in order to get privileged access to the REE allowing the exe-
cution of the exploit. The attacker may be a layman or have some level of expertise but the
attacks do not require any specific equipment.”

At present, the minimum assurance level for GP TEE compliance is CC EAL2+. This is a lower
level of assurance than other secure execution platforms, such as smart cards and secure ele-
ments. These latter platforms are typically evaluated to CC EAL4+ and against expert adversaries
possessing specialist testing equipment.

EXFILES D3.1 Public Page 13 of 45



D3.1 - TEE Security Study

Table 2.1: Minimum security requirements of GP TEE assets, from [30, 63].

Property
Asset C I AU U UP AT DB M CO IM

TEE Identifier 3 3

RNG 3

TA Code 3 3

TA Data and Keys 3 3 3 3 3 3

TA Instance Time 3

TA Run-time Data 3 3 3

TA Persistent Data 3 3 3 3 3

TEE Firmware 3 3

TEE Init. Code and Data 3

TEE Storage RoT 3 3

TA Persistent Time 3

Rollback Detection Data 3

TEE Debug Auth. Key 3 3

C: Confidentiality, I: Integrity, AU: Authenticity, U: Uniqueness, UP: Un-
predictability, AT: Atomicity, DB: Device Binding, M: Monotonicity, CO:
Consistency, IM: Immutability.

2.4 Proprietary Systems

Proprietary TEE systems have been developed by some OEMs that offer orthogonal services
to the GlobalPlatform TEE. Two common systems found on Samsung and Apple devices are
Samsung KNOX and the Apple Secure Enclave Processor (SEP) respectively.

2.4.1 Apple Secure Enclave Processor (SEP)

Apple’s Secure Enclave Processor (SEP) is a security co-processor on Apple devices. Very few
publicly available details exist about the SEP besides high-level features provided in Apple mar-
keting materials. However, some reverse engineering methods have been made by independent
security researchers [45]. The SEP shares similarities with ARM TrustZone and is directly ini-
tialised during the secure boot process by the boot ROM, the device’s root-of-trust. It provides
access to hardware-backed cryptographic operations, such as encryption and signing services.
The SEP uses memory encryption between internal memory and external RAM to protect data
in transit between itself and and main memory. It can also access its own set of peripherals, a
bank of one-time programmable ROM (eFuses), and widely used input/output interfaces, such as
GPIO and SPI. The SEP has been shown to support iOS key management and the Apple iOS
biometric authentication systems, including Touch ID and Face ID.

2.4.2 Samsung KNOX

Samsung KNOX is a security platform found on leading Samsung handsets built from a TrustZone-
based TEE. The platform provides containers, known as KNOX Workspaces, that are encrypted
using keys held in the TEE. The workspaces provide secure locations in which documents,
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videos, photographs and other data can be stored and encrypted automatically. As such, data
cannot be extracted from these workspaces without co-operation from the TEE to decrypt them.
At boot time, Samsung KNOX extends the secure boot process on Samsung devices to set an
eFuse known as the ‘warranty bit’ if any unauthorised boot components are loaded. If the eFuse
is set, new KNOX containers cannot be created and existing ones cannot be decrypted. The
state of this eFuse is permanent and persists across reboots and resets [20]. Another additional
security mechanism is the use of remote attestation to allow remote entities to validate the state
of the target device. That is, the remote verifier can learn, using a secure channel, if the de-
vice has been booted with any unauthorised bootloaders by inspecting the state of the eFuse.
These attestation messages are signed using a device-specific attestation key accessible only
to the TEE, the public key of which is used by the remote verifier to authenticate the response
messages [20].
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Chapter 3

Security Mechanisms Using Mobile TEEs

This chapter summarises common device security mechanisms that are provided wholly, or en-
hanced in part, by mobile trusted execution environments.

3.1 Trusted Boot

Trusted boot is an adaptation of secure boot (see §2.2.4) that enables services to be aware of the
platform’s configuration state. Trusted boot is the implementation which makes use of a hardware
module to verify the boot sequence. During the launch process, boot components are measured
using SHA-2 or another cryptographically secure one-way hash function and stored securely, as
shown in Figure 3.1. Alternatively, the device may securely set an eFuse when unauthorised boot
components are detected, as with the Samsung KNOX platform. Either way, both the measuring
and storing procedures relating to platform measurement values are performed using the TEE.
The TEE can then use these values at run-time to limit access to sensitive assets, such as crypto-
graphic keys. The deviation of measurements from a set of known values indicates the presence
of unauthorised boot components that could undermine the security of the TEE.

On non-mobile devices, trusted boot is often realised using a Trusted Platform Module (TPM).
Here, the TPM measures each stage in the boot sequence using a hash function, where it is
appended to the previously measured hash value. This creates a hash chain using the Platform
Configuration Registers (PCRs), which can be used for various purposes. For example, it can
be used to decrypt data only when the machine reaches a specific stage in the boot sequence
(sealing) or to verify that the system is in a state that is trusted (remote attestation) [31].

3.2 Remote Attestation

Remote attestation dates back to the security abstractions provided by the Trusted Platform Mod-
ule (TPM) specified by the Trusted Computing Group (TCG) [37]. It is a challenge-response
protocol between a remote verifying authority and a proving device, such as a mobile handset.
The function of RA is for the device to authenticate its hardware and software configuration to a
remote verifier, which may control access to sensitive assets based on that configuration. Tradi-
tionally, these hardware and software measurements are taken at boot time as part of a trusted
boot sequence; however, some non-mobile TEE platforms support taking on-demand measure-
ments of trusted applications as part of the device’s run-time environment.
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Figure 3.1: Generic trusted boot measurement procedure [67].

Whether the measurements are taken at run-time or boot-time, a critical step is that the attesta-
tion response is signed by a device-specific signing key whose public key is known to the verifier.
The attestation signing key can be provisioned, or ‘burned’, into eFuses by the manufacturer or
provisioned over a secure channel after the TEE has first launched. It is also critical that the TEE
measures the hardware and/or software components of interest and signs the responses, also
known as attestation ‘quotes’. After returning the quote, the remote party verifies its signature
using the attestation public key and inspects the measurements for any deviations from the ex-
pected values.

While not formalised as part of the GlobalPlatform TEE specifications, remote attestation proto-
cols have been widely deployed by a small number of mobile and non-mobile vendors. Samsung
KNOX supports remote attestation to assist with enterprise bring your own device (BYOD) poli-
cies. The KNOX platform provides a mobile device manager (MDM) for enterprise system ad-
ministrators to assess the trustworthiness of employee handsets. The MDM can perform remote
attestation with an enrolled device; the device then signs and returns the bootloader measure-
ments, and the state of the warranty bit using a device-specific and TEE-bound attestation. The
attestation responses are authenticated at the MDM’s backend using the Samsung Attestation
Server, which possesses the corresponding public keys [60].

Remote attestation is also used by Intel SGX on Intel-based X86-64 systems. Each Intel CPU
contains a hardware-bound attestation key that is used to sign quotes containing the measure-
ment of SGX enclave applications [19]. The signed quote is then transmitted to the remote
verifying authority over a secure channel. The SGX attestation protocol uses a group signature
scheme, which uses a single public key to verify all private keys such that users’ individual CPU
signing keys cannot be identified. Remote attestation is also used to verify the target enclave’s
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state in the EPID protocol, first proposed by Brickell et al. [16]. After this, EPID can bootstrap a
secure channel to allow the provisioning of secrets into enclaves after their deployment.

3.3 Key Management

Mobile TEEs can provide secure persistent storage of sensitive material. At a specification level,
the GlobalPlatform TEE provide functions via the Internal Core API [28] for device data ‘binding’.
This generates encryption keys from a hardware unique key (HUK) using a key derivation func-
tion (KDF) within the TEE, which are used to encrypt TA and TEE key material and data. TAs can
also use these keys to encrypt non-secure world data if needed. The keys must never leave the
TEE and, consequently, encrypted material cannot be decrypted on another device. The Glob-
alPlatform TEE specifications support the storage of keys and data objects to external security
hardware, such as a secure element. If used, this external hardware must be accessible only to
the TEE [27].

One widely deployed TEE key management system is the Android Keystore, which lets (user-
space) application developers generate and containerise cryptographic keys within a TEE [5].
The key material is generated using a TEE-based secret and never exposed outside the secure
world, even if the OS is compromised. Android OS provides abstract interfaces to developers
in order to operate upon this material, such as encryption, decryption, and signature verifica-
tion and signing, but direct access to these keys is not given to developers. A similar system,
the Android Gatekeeper [4], performs user authentication of inputted passwords in the TEE. The
Gatekeeper enrolls user passwords by applying an HMAC to the password, identification value,
and a hardware secret key, which is stored in the TEE. Subsequent authentication attempts in-
volve regenerating this value and checking their equivalence. If successful, the Gatekeeper uses
a TEE-derived secret to sign and transmit an authentication message to the Keystore TA. This no-
tifies the Keystore TA that the user authentication secret was entered correctly and TEE-resident
keys can be used. The Gatekeeper service limits the number of failed verification attempts and
prevents further attempts using a timeout and counter.

Another application of TEE key management is for digital rights management (DRM) enforcement,
as used by Microsoft PlayReady and Google Widevine frameworks [69, 32, 47]. Widevine—a
widely used DRM platform used by leading video providers, including Netflix and Amazon Prime
Video—supports TEE-based decryption and processing of video material. Widevine provides
OEMs with a TA that contains decryption key for recovering encrypted video material sent by
media providers. The decrypted media then undergoes video processing directly by the TEE
without REE co-operation (WideVine Level 1 security) or passed to the REE for processing but
with the decryption occurring in the TEE (WideVine Level 2).

3.4 Trusted Paths for Input/Output (I/O) Devices

Enforcing access control to security-critical peripherals is a key design principle of many of to-
day’s security systems. Allowing only the TEE to access these peripherals prohibits an untrusted
native OS from reading sensitive data that could compromise the long-term security of device
users. If supported, a SoC’s TrustZone Protection Controller (TZPC)—see §2.2.3—can prevent
non-secure accesses to secure world-only I/O peripheral devices, such as General Purpose I/O
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(GPIO) and the I2C and SPI serial interfaces.

Biometric authentication on Android devices follows this approach, where the TEE acquires and
processes facial and finger data using the camera and fingerprint reader peripherals respectively.
The Android fingerprint authentication system, shown in Figure 3.2, gives only the TEE the ability
to access the reader, which then executes the authentication algorithm and exposes the results
to the untrusted world over a restricted interface. If the user is successfully authenticated, i.e. the
fingerprint image corresponds to the enrolled image, then the TEE also notifies the Keystore TA to
allow any TEE-resident cryptographic keys to be used. A similar approach is also used for facial
authentication where the TEE has direct access to the camera peripheral without untrusted world
co-operation. It is critical to understand that the untrusted world—OS services or third-party user
applications—cannot access the peripherals for biometric data acquisition, or the authentication
algorithm itself. This is to prevent a privileged adversary from simply disabling the authentication
stage or harvesting users’ fingerprint images, which would pose major long-term security and
privacy issues.

In the DRM domain, the Google Widevine framework supports trusted path video output. Here,
the WideVine TA decrypts the video stream from the provider, as described above in §3.3, and
supports outputting video contents directly to a video buffer in the TEE. This buffer is outputted
to the screen such that the REE never observes the decrypted video material.

Figure 3.2: Android fingerprint authentication information flow [2].

3.5 Full Disk Encryption

Full disk encryption (FDE) is used to encrypt all device user data such that it cannot be readable
by an attacker who has not decrypted its contents. FDE implementations use symmetric encryp-
tion, usually AES, to encrypt data at the block level. User data is encrypted before saving to it
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to disk, such as a photograph or audio file; when the data is read, the decryption procedure is
performed before returning it to the parent process. Android’s FDE implementation operates as
follows: a master key (up to 256 bits) is used to encrypt/decrypt data, which is generated and
hashed with a default password and salt value when the device is booted for the first time. This
hash is signed by the TEE; the signature of this hash is used to encrypt the master key. When the
user sets their PIN or password, the 128-bit key is re-encrypted and stored. The AES-128 data
encryption key (DEK) is encrypted with an AES-128 key encryption key (KEK), which is in turn
derived from the user PIN though the password-based key derivation function 2 (PBKDF2) [72].
Using two different keys, namely the DEK and the KEK, renders re-encryption in the case of PIN
changes unnecessary. Only with successful user authentication is the FDE key released such
that it can be used to decrypt the contents of user data. Without successful authentication, the
OS is not able to decrypt and read the protected data [3].

3.6 File-based Encryption

File-based encryption (FBE) refers to the encryption of data at a filesystem level, rather than a
block or volume level as with FDE. This can allow different user profiles to exist under separate
security policies; for example, a dedicated work profile that encrypts corporate files. FBE typically
uses AES on commercial devices. On Apple devices, a 256-bit per-file encryption key (FEK) is
generated each time a file on the data volume is created by Apple’s proprietary Data Protection
module, which uses the SEP for key management. The FEK is wrapped using a class key gen-
erated by the SEP and given to a hardware AES engine, which encrypts the file under the FEK
as it is written to flash memory. When a file is read, it is decrypted by the AES engine as it is
transmitted from memory. The encryption uses AES-128 in XTS mode, using 128 bits of the
256-bit key as the cipher key and the other 128 bits as the tweak.

FBE is also supported by Android implementations from version 7.0, which uses the Direct Boot
feature to boot encrypted devices to the lock screen; only after successful user authentication are
encrypted files decrypted. On Qualcomm-based SoCs (Snapdragon 855 and over) this works
as follows [55]: FBE Credential Encrypted (CE) class keys are generated that are protected by
a secret derived from a device unique key and a synthetic password. The synthetic password is
generated by Android for each user, which is protected by the user credential, e.g. password, and
(if applicable) an escrow token for providing access to system administrators. When the device
is unlocked, the FBE CE key is decrypted and set in the Linux kernel key-ring. When the file
system driver reads or writes a protected file, the key is retrieved from the kernel key-ring and
set in the proprietary Qualcomm Inline Crypto Engine (ICE) for encrypting/decrypting files to and
from memory using AES [57].

3.7 Future Directions

Security practitioners should also be aware of emerging methods and applications of using mobile
TEEs, a multitude of which have been published in recent research. Examples include TEE-based
mobile deep learning libraries [38] that allow multi-layer neural networks to execute aboard a mo-
bile TEE, thus paving the way for secure image classification and speech recognition. Authenti-
cating mobile adverts from advertising networks within the TEE was proposed by Li et al. [39] to
protect users from malicious advertisements introduced, for example, using man-in-the-browser
attacks. Processing REE system logs in TEEs has also been proposed for both Intel SGX [36]
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and the GlobalPlatform TEE [64] to preserve logs used for audit and forensic investigations. Fur-
thermore, TEE-to-TEE communication and credential management has also been proposed to
aid data migrations, backups, and backups from TEEs with remote attestation [65, 66]. In other
work, TEEs have been proposed for securing health-related data [62], confidential image pro-
cessing [17], and executing cryptocurrency wallet operations [23].
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Chapter 4

White-Box Mobile TEE System

This chapter describes the design choices and rationale, features, and limitations of our white-box
mobile TEE system.

4.1 Commercial and Open-Source TEEs

As discussed in Chapters 2 and 3, TrustZone is the principle way by which TEEs are estab-
lished on ARM-based SoCs, which are found ubiquitously on today’s mobile devices and their
security mechanisms [21]. However, TrustZone comprises the hardware components—SoC and
CPU extensions—for creating a TEE. Additional modules are required to instantiate a full TEE,
particularly a secure kernel that conforms to the GlobalPlatform TEE specifications. The secure
kernel implements the TEE’s software functionality; it is the kernel and its hosted applications
that implement the TEE-driven security mechanisms on modern mobile devices. We have iden-
tified 11 commercial and open-source TrustZone-based TEEs that can be used to provide a fully
functional TEE:

• Huawei iTrustee [34]: a closed-source TEE from Huawei for Hisilicon SoCs with ARM
TrustZone. It is used to protect fingerprint screen unlocking, fingerprint payments, USB
keys, Skytone, and the Huawei Wallet on modern Huawei devices. iTrustee is known to be
compatible with the Kirin 980 SoC used by the Huawei P30, Mate 20, Nova 5T, Mate X,
Mediapad M6, Honor 20, and View 20 models [33].

• ProvenCore [54]: a closed-source TEE developed by Prove & Run for TrustZone-based
SoCs using Cortex-A and Cortex-M CPUs, and supports the RISC-V architecture. Proven-
Core is backed by formal methods and has been certified to Common Criteria EAL7, above
the minimum EAL2+ required for GlobalPlatform TEE certification.

• Qualcomm Trusted Execution Environment (QTEE) [56]: a closed-source TEE OS de-
veloped by Qualcomm for TrustZone-based SoCs. QTEE is known to be GlobalPlatform-
compliant and is currently used on LG, Xiaomi, Sony, HTC, and OnePlus mobile devices. It
is also publicly known to support Qualcomm-based SoC security functions such as crypto-
graphic accelerators, random number generators, and eFuses.

• Samsung TEEGRIS [61]: a closed-source TEE developed by Samsung for TrustZone
SoCs. TEEGRIS allows authorised developers to provision their own applications and ser-
vices, and complies with the GlobalPlatform TEE specifications. TEEGRIS is currently the
TEE on Samsung devices from the Samsung Galaxy S10 [58].
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• SierraTEE [68]: a closed-source TEE that supports MIPS and ARM TrustZone. It is known
to provide a comprehensive implementation of the GlobalPlatform APIs, with support for
the ARM11, ARM Cortex-A8/A9/A15/A53/A55/A75, and the MIPS P5600 architectures.

• TrustKernel T6 [70]: a closed-source TEE developed for ARM TrustZone SoCs with Glob-
alPlatform certification. It is currently used by over 200 OEMs with selected partners, prin-
cipally based in China, including Alipay, Tencent, Baidu, ChinaDRM, ZTE and Skyworth.

• Trustonic Kinibi [71]: a closed-source TEE for ARM TrustZone-based SoCs. Kinibi is
GlobalPlatform compliant and has been deployed on two billion devices worldwide. Kinibi
was the main TEE for Samsung devices from the release of the Galaxy S6 to the Galaxy
S9, after which it was replaced with TEEGRIS [58].

• Nvidia TLK [48]: the Nvidia Trusted Little Kernel (TLK) is an open-source TEE built for
Nvidia Tegra SoCs. It is a fork of the Little Kernel (LK) open-source embedded kernel
project [35], supports the GlobalPlatform TEE specifications, and provides limited but pub-
licly available documentation. However, the last code commit was in 2015.

• OP-TEE [42]: the Open Portable TEE (OP-TEE) is an open-source platform first developed
by ST-Ericsson. It is currently maintained by the Trusted Firmware project, which devel-
ops reference implementations of ARM firmware that includes Google, STMicroelectronics,
ARM and NXP. It is actively maintained with a large base of documentation and supports
popular non-secure world OSs, e.g. Android and Debian Linux, and secure world applica-
tion development. OP-TEE is maintained for several ARM-based development kits, includ-
ing the HiKey Board (HiSilicon Kirin 620 SoC), Raspberry Pi 3, Atmel ATSAMA5D2-XULT,
ARM Juno, and the QEMU hardware virtualisation platform.

• Open-TEE [46]: an open-source virtual TEE developed by Aalto University and the In-
tel Collaborative Research Institute for Secure Computing. Open-TEE supports the Glob-
alPlatform TEE specifications, enables the development of third-party applications and ser-
vices, and provides low-level access to firmware components. It also provides build support
for Android OS.

• Trusty: an open-source TEE developed by Google for Android OS. It is derived from the
LK project [35] and provides a non-secure world kernel driver and a user-space Android
library for interfacing with the TEE. However, Trusty is not GlobalPlatform-compliant and
uses Google-specified interfaces for inter- and intra-world communications.

4.1.1 Evaluation Criteria

To compare these technologies, the following set of evaluation criteria are used to summarise
and contrast the features provided by each system:

• C1: Open-source. The system’s source code is publicly available and supports the devel-
opment of new features, applications and services, and the modification of existing ones.
For our goals, an open-source system is critical to enabling researchers and analysts to
inspect, modify and redeploy critical TEE components in a white-box fashion.

• C2: GlobalPlatform-compliant. The system complies to the GlobalPlatform TEE specifica-
tions. This provides confidence that new attacks and security mechanisms are developed
using a standardised TEE architecture that will be encountered in the wild.
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• C3: Actively maintained. The TEE is receiving active maintenance in the form of bug fixes,
new features and new platform support.

• C4: Public documentation. The system has publicly available documentation about its low-
and high-level features. This is indispensable in order to fully characterise the TEE without
entering into a commercial relationship or requiring extensive reverse engineering.

• C5: Firmware access. The TEE’s firmware is open-source and can be modified. While the
security operating system might be open-source, it is critical for the underlying firmware
to be open-source, which may be supplied by a third-party. This is important when devel-
oping new unsupported security mechanisms and developing and understanding proof-of-
concept attacks against low-level components.

• C6: Implements common security mechanisms. The system supports common security
mechanisms, such as secure encrypted storage and secure boot, against which potential
attacks could be developed.

• C7: Deployable on commercial handsets. The TEE can be deployed on commercially
available, off-the-shelf mobile handsets.

• C8: Deployable on commercial development kits. The TEE can be deployed on commer-
cially available, off-the-shelf development boards that closely resemble, but do not directly
reflect, a complete commercial mobile platform.

4.1.2 Analysis and Discussion

A comparison of commercial and open-source TEEs is presented in Table 4.1. Notably, only a
minority of TEEs have been published in the open-source domain; the majority are closed-source
systems that require an established business relationship with the provider. The TEEGRIS, for
example, “is only available to strategic partners with strategic partnership agreements” with Sam-
sung [61]. Certain TEEs limit support to SoCs by the same manufacturer. Qualcomm’s QTEE
provides a hardware abstraction layer (HAL) for Qualcomm-based SoCs, such as the Snapdragon
series; Samsung TEEGRIS is deployed only on Samsung-based SoCs at present; and Huawei’s
iTrustee is known to be certified only against Hisilicon SoCs, a Huawei-owned semiconductor
subsidiary [33, 56, 61]. We are currently not aware of widely available mobile smartphones or
tablets currently using the ProvenCore or Sierra TEEs, while very few details are publicly known
about the T6 kernel’s deployment.
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Table 4.1: Comparison of commercial and open-source TEEs.

Evaluation Criteria
TEE C1 C2 C3 C4 C5 C6 C7 C8

Huawei iTrustee [34] 7

ProvenCore [54] 7

Qualcomm TEE [56] 7

Samsung TEEGRIS [61] 7

Sierra TEE [68] 7

TrustKernel T6 [70] 7

Trustonic Kinibi [71] 7

Nvidia TLK [48] 3 7 7 3 3 3 7 3

OP-TEE [42] 3 3 3 3 3 3 7 3

Open-TEE [46] 3 k k 3 3 3 7 7

Trusty [6] 3 7 3 3 3 3 7 3

3: Satisfies, 7: Does not satisfy, k: Partially satisfies. Gray regions
cannot be verified due to proprietary restrictions.

Among the open-source TEEs, Nvidia’s TLK is a promising secure world OS stack, which is re-
leased as FOSS1 under the MIT license. The code base is relatively small (23k lines of C), thus
limiting operational complexity, and supports the Tegra SoC with TrustZone extensions. How-
ever, TLK’s is not actively maintained2 and implements its own REE client and TEE internal APIs
that are not GlobalPlatform-compliant. Complying to the GlobalPlatform TEE specifications is an
important feature when developing a research platform to develop attacks on applications and
services. It provides a level of assurance that research is applicable to the standard behaviour of
mobile TEEs, which are evaluated to these specifications under the Common Criteria framework.
Trusty shares some similarities with Nvidia’s TLK: both are built from the LK open-source embed-
ded kernel project and support TrustZone-based SoCs. However, Trusty is an actively developed
TEE that is maintained as part of the Android Open Source Project. Unfortunately, like TLK,
Trusty implements client and internal APIs that are not faithful to the GlobalPlatform specifica-
tions. In contrast, Open-TEE is a dedicated platform for conducting TEE-based research, which
is built around remaining faithful to the GlobalPlatform specifications:

“Our primary motivation for the virtual TEE is to use it as a tool for developers of
Trusted Applications and researchers interested in using TEEs or building new pro-
tocols and systems on top of it. Although hardware-based TEEs are ubiquitous in
smartphones and tablets ordinary developers and researchers do not have access to
it. While the emerging GlobalPlatform specifications may change this situation in the
future, a fully functional virtual TEE can help developers and researchers right away.”
— Open-TEE project [52]

Open-TEE was developed in 2015 and remains under semi-active development. It provides pub-
licly available documentation and supports Android as the non-secure world OS. Open-TEE also
has integrated support for GDB3 and the QtCreator C/C++ IDE. One major downside is that

1FOSS: Free open-source software.
2TLK’s last code commit is 5+ years ago.
3GDB: GNU Debugger.
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the project is a virtualised TEE; it is not supported for deployment on physical development kits
or handsets. This prohibits researchers from analysing physical and micro-architectural attacks
based on hardware idiosyncrasies, such as Rowhammer-type attacks and cache-based side-
channel attacks. In the last of the open-source TEEs, OP-TEE is an actively development TEE
framework maintained by the Trusted Firmware industry consortium. Like Open-TEE, OP-TEE
is GlobalPlatform-compliant, supports Android as the REE OS, provides debugging functionality
and has well-developed, publicly available documentation. OP-TEE supports several commer-
cially available TrustZone development boards and the QEMU virtualisation platform. It supports
common security mechanisms defined in the GlobalPlatform TEE specifications, including en-
crypted secure storage and secure booting of the secure world. A downside is that we are not
aware of any commercial handsets that are currently using OP-TEE. Similar to the Open-TEE, its
aim is to facilitate research and prototype development on a GlobalPlatform-compliant TEE.

We note that no open-source TEE can be readily developed and deployed on commercial hand-
sets. This is because the secure boot process requires OEM-signed binaries of the secure world
and its firmware; new firmware, applications and services cannot simply be redeployed without
ascertaining corresponding signatures from the OEM. We are not aware of any mobile device
OEMs that offer free and open access to their TEE platform.

In conclusion, we have selected OP-TEE from which to build a testbed platform for mobile TEE
research. In summary, this is based on its faithful compliance with the GlobalPlatform specifi-
cations; wide documentation and community support; support for common security mechanisms
and popular non-secure world OSs, e.g. Android and Debian Linux; and support for physical ARM
TrustZone development kits. The following sections in this chapter describe the construction of
this testbed.

4.2 Proposed Test-Bed Platform

This section summarises the proposed white-box TEE platform, its secure world functionality,
cryptographic implementation details and its key management.

4.2.1 Overview

Our test-bed platform is underpinned by the OP-TEE project—an open-source, ARM TrustZone-
based TEE that was first developed by ST-Ericsson. STMicroelectronics maintained OP-TEE
following the split of ST-Ericsson in 2013, then by the Linaro Group in 2015–2019, and is cur-
rently maintained by the Trusted Firmware project. It is built as a secure world counterpart to a
non-secure world Linux kernel running on the ARM architecture with a Cortex-A CPU. The sys-
tem follows the GlobalPlatform TEE system architecture and implements both the Internal Core
and Client APIs for intra- and inter-world communication respectively. The reader is referred to
[49, 41, 42] for detailed documentation regarding its supported functionality and limitations.
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Figure 4.1: OP-TEE high-level system architecture [41].

The platform mirrors the OP-TEE architecture, illustrated in Figure 4.1, which comprises the
following components:

• A secure world operating system that executes at EL-1 (see §2.2.2).

• Secure world user-space libraries for TEE TAs to interact with the secure world OS.

• A non-secure world Linux kernel TEE framework and driver.

• Non-secure world user-space libraries that comply with the GlobalPlatform TEE Client APIs.

• Non-secure world daemon (tee-supplicant) for facilitating auxiliary TEE operations, such
as TA performance profiling using gprof.

• Test suite for regression and specification testing of GlobalPlatform API implementations.

• Example non-secure and TEE applications.

• Debugging tools and build scripts for over 50 supported ARM development boards (see
Chapter 7).

Additionally, the test-bed uses the ARM Trusted Firmware framework [14]—a reference firmware
developed by ARM—for implementing the secure boot sequence and the secure monitor code for
Cortex-A processors.
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4.2.2 Secure World Core Functionality

The primary component is the secure world kernel that complies with the GlobalPlatform spec-
ifications. We now discuss the main features of the secure world OS, including world context
switching, memory management, and trusted applications.

World Switching and Interrupt Handling

The secure OS executes in the secure world at EL-1 under the ARMv8 architecture, with world
switches performed by the secure monitor (at EL-3). Switching between the worlds occurs when
the REE executes a secure monitor call (SMC) instruction. The SMC is trapped by the monitor
code that switches execution mode—saves the current context, general purpose and non-banked
system registers, and sets the NS bit—if the target service is in the TEE. Similarly, when OP-
TEE returns execution to the normal world, the OP-TEE OS executes an SMC instruction that is
trapped by the monitor, which restores the REE context and switches the execution mode back
to the normal world.

Each world owns and handles its own exception vector tables, except when secure world inter-
rupts are handled during non-secure execution and vice-versa. If secure interrupts are signalled
while the processor is in secure mode, then the secure OS handles it from its exception vector. If
secure interrupts are raised while the CPU is in non-secure mode, the secure monitor handles the
exception and invokes the secure OS to serve the interrupt. When non-secure world interrupts
are raised, the normal world handles it in its own interrupt exception vector. Lastly, if the system is
in secure execution mode and a non-secure interrupt is raised, OP-TEE OS will transiently return
to the REE to allow it to handle the non-secure interrupt.

Memory Management

At present, the secure OS requires 256kB RAM as a minimum requirement. Both dynamic and
static RAM is supported, the latter of which is supported using memory paging to overcome sit-
uations where the kernel does not fit into SRAM. For virtual memory management, the secure
OS uses several translation tables for mapping virtual memory to physical memory: one of size
4GB and two or more smaller tables of size 32MB. The 4GB table handles kernel model mapping,
while the smaller tables are assigned per thread and cover the virtual memory mapping per TA
context. We note that the secure OS assigns a (trusted) thread for each SMC call that handles
the execution context of the requested TEE service.

The secure OS can also support the shared memory between the TEE and the REE in line with
the GlobalPlatform TEE, which can be used to transfer data between each world. The shared
memory is allocated and managed by the non-secure world by the Linux OP-TEE driver. Both
contiguous and non-contiguous shared memory buffers are supported.

At boot-time, the test-bed uses the open-source Trusted Firmware framework. This implements
the secure boot procedure and, if available, configures the TrustZone Address Space Controller
(TZASC). The TZASC allocates secure/non-secure memory regions and enforces access control
of secure/non-secure accesses to those regions at run-time. The reader is referred back to §2.2.3
for a description of TZASPC and the controllers used to protect other memory units.
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Trusted Applications

Two methods are supported for implementing trusted applications (TAs): user-mode TAs, which
conform to the GlobalPlatform TEE specifications and run at a lower exception level than the TEE
kernel, and pseudo-TAs. User-space TAs are designed for typical TEE application, such as for im-
plementing biometric authentication, keystores, and more. OP-TEE provides the libutee library
that enables user-space TAs to interact with the OP-TEE Core services using the GlobalPlatform
Internal Core APIs. The non-secure world invokes a TA by calling its universally unique identifier
(UUID) using the Linux library, after which the OP-TEE OS memory maps the TA into the secure
world. OP-TEE provides support for signing and encrypting secure world TAs under a signing key
that is used for the OP-TEE OS blob. As such, TAs can be stored in untrusted persistent memory,
e.g., flash memory, prior to being used.

Pseudo-TAs are statically built into the OP-TEE binary image execute at the same exception
level as the kernel. They are designed to act as interfaces to the OP-TEE core to facilitate the
development of higher privilege components, rather than needing to directly modify the OP-TEE
core. This is useful when building novel secure OS services or low-level tests that require a higher
exception level.

4.2.3 Cryptographic Implementation Details

The secure OS implements the cryptographic operations specified by the GlobalPlatform TEE
Internal Core API [28]. This includes signature signing and verification, including elliptic curve-
based operations; asymmetric and symmetric algorithms, e.g., AES in various modes of opera-
tion, such as Cipher Block Chaining (CBC); message authentication codes (MACs); authenticated
encryption; cryptographic one-way hash functions; and key derivation functions. The reader is re-
ferred to the GP Internal Core API [28] for a full specification of supported algorithms and modes
of operation.

The secure OS implements cryptographic operations using the open-source LibTomCrypt [40]
library and, where available, ARM Cryptography Extensions for providing instruction-level AES
and SHA. The functions it exposes to TAs, however, are far removed from the actual implemen-
tations, as per Listing 1. The TA calls the GlobalPlatform Internal Core API functions, which
are handled using the libutee user-space library. This library uses the system call interface
to call the corresponding cryptographic implementation in LibTomCrypt built into the secure OS
core. The secure OS also provides an abstraction layer for supporting additional cryptographic
operations. This could be useful, for example, when implementing novel mechanisms based on
post-quantum cryptography that are not yet supported by the GlobalPlatform specifications.

Listing 1 OP-TEE GlobalPlatform Internal API call stack [50].
1: ta function() {Arbitrary TA function – User space}
2: → TEE *() {Provided in libutee.a}
3: → utee *() {System call interface}
4: → tee svc *() {Kernel space}
5: → crypto *() {libtomcrypt.a and crypto.c}
6: /* LibTomCrypt */ {libtomcrypt.a; algorithm implementations}
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4.2.4 Security Mechanisms

We now describe the key security mechanisms provided by our test-bed platform.

Secure Boot

The platform supports an authenticated secure boot process implemented by the Trusted Firmware
Framework for Cortex-A CPUs. This process mirrors that outlined in §2.2.4 of Chapter 2. It uses
a chain of trust starting with a trusted component: this is the first bootloader image (BL1) and
a SHA-256 hash of the root of trust public key. The BL1 first loads and verifies the BL2 certifi-
cate. The hash of this key is calculated and compared with the root of trust SHA-256 hash; if
successful, the hash of the BL2 image is read from the certificate. BL1 loads BL2, computes its
hash, and verifies it against that contained in the certificate. If successfully verified, control is
passed to BL2. This process repeats with BL2 to load the trusted and non-secure worlds with
their public keys. At each stage, the hash of the public key is checked against that in the root of
trust. OP-TEE uses the open-source mbedTLS [12] embedded cryptography library to implement
this process. During the build process, the developer can specify an RSA certificate as the root
of trust. All of the components in the boot chain are self-signed.

Secure Storage

The secure OS implements the Trusted Storage abstraction defined by the GlobalPlatform TEE.
This assumes one of two implementations:

• Using the filesystem controlled by REE. As per the GlobalPlatform TEE specifications, this
is acceptable as long as TEE data is protected using a method “as strong as the means
used to protect the TEE code and data itself” [27].

• Using the Replay Protected Memory Block (RPMB) partition of an eMMC device.

Using the first method, a TEE TA calls a function using the GlobalPlatform Internal Core API
to write data to a persistent object. This triggers a system call implemented by the secure OS
that encrypts the data and sends to the REE over the secure monitor. The TEE supplicant (see
Figure 4.1) receives the message and stores the encrypted data to a Linux-based filesystem.
Reading files invokes the reverse operations, with the object being decrypted in the final step.
The encryption and decryption operations are performed using AES in GCM mode and keyed
using a file encryption key (FEK), which is derived using a four-tier hierarchy (from root to lowest):

1. Hardware unique key (HUK): a unique, per-device key that is provisioned by the device’s
manufacturer into read-only memory. Currently, the secure OS uses a static key for the
HUK; its concrete implementation is left to the manufacturer.

2. Secure storage key (SSK): a per-device key that is generated by the secure OS on first
boot. It is derived using an HMAC from the HUK as follows, where || is the concatenation
operation:

SSK = HMACSHA256(HUK,ChipID || static string)

3. TA storage key (TSK): a per-TA key that is used to encrypt and decrypt the file encryption
key (FEK). It is derived as follows:

TSK = HMACSHA256(SSK,UUIDTA)
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4. File encryption key (FEK): generated every time the TA produces a persistent object file
from a pseudo-random number generator (PRNG). The FEK is saved in a meta-file after
being encrypted under the TSK.

The second secure storage abstraction uses the device’s RPMB. This is a small, authenticated
area controlled by the secure world. It uses a shared key between the controller and the OP-TEE
OS to authenticate all read/write operations that access the secure area, which is configured at
launch time, to prevent accesses from the REE.

Additional Mechanisms

We have also deployed TAs proposed in related research in [64] for protecting non-secure world
system logs in the TEE, and [65] for performing TEE-to-TEE remote attestation. Both of these
comply with and use functions from the GlobalPlatform Client and Internal Core APIs. Further-
more, we have successfully developed skeleton pseudo-TAs, which execute at a higher privilege
level, for developing novel TEE security mechanisms and for conducting security tests on con-
ventional user-space TAs.

4.2.5 Supported Development Platforms

The platform currently supports 51 commercially and non-comercially available ARM develop-
ment boards with TrustZone extensions. These include the HiKey 620 and 960 boards, based
off the HiSilicon Kirin 620 and 960 SoCs respectively; the Raspberry Pi 3; ARM Juno and Foun-
dation FVP; NXP i.MX7Dual SabreSD board; Atmel ATSAMA5D2-XULT board; the Xilinx Zynq
7000; and STMicroelectronics STM32MP1. The platform also supports the QEMU hardware
virtualisation platform for the ARMv7 and ARMv8 architectures. This is useful when rapidly proto-
typing test services and applications without re-initialising and re-flashing physical development
boards. A comprehensive list of the supported platforms is provided in Appendix A in Chapter 7.

For our test-bed, we have successfully deployed the infrastructure on the HiKey 620 ARM de-
velopment, pictured in Figure 4.2. This board was chosen due to its commercial availability and
closely resembles a typical architecture of a modern mobile device. In particular, the HiSilicon
Kirin 620 is same SoC used by a large range of Huawei smartphones, including the Huawei
Honor 5A, 4C and 4X, the Honor Holly 3, Huawei Y6, P8 and P8 Lite, and G Play Mini. The
HiKey boards are also the only boards that OP-TEE provides documented support for Android
as the non-secure world OS. It is important to note that the infrastructure does not support the
most recent mobile handsets; development platform for such devices, e.g., Apple iPhone 12 or
Samsung Galaxy S20, are not commercially available, nor are they supported by the OP-TEE
project.

The specifications of the HiKey 620 board are as follows:

• SoC: HiSilicon Kirin 620.

• CPU: 64-bit, eight-core ARM Cortex-A53 at 1.2GHz (ARMv8 architecture).

• GPU: ARM Mali 450-MP4 with OpenGL ES and OpenVG support.

• RAM: 2GB LPDDR3 SDRAM at 800MHz.
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• Storage: 8GB eMMC with a MicroSD card slot.

• Network connectivity: Ethernet (via USB2.0), IEEE 802.11 b/g/n Wi-Fi (2.4GHz), Blue-
tooth and Bluetooth Low Energy support.

• Display: full-size HDMI 1.4 output and serial MIPI/DSI HDMI output.

Figure 4.2: HiKey 620 ARM development board with a HiSilicon Kirin 620 SoC [15].

The OP-TEE infrastructure, including the ARM Trusted Firmware framework, is used for the se-
cure world OS, secure monitor code, TA libraries (including GlobalPlatform API implementations),
and non-secure world drivers. It is used to implement the architecture shown previously in Figure
4.1. For the non-secure world, we have successfully trialled both Debian Linux and Android OS
(version P), the latter of which closely mimics the setup on a commercial handset. We have also
deployed the infrastructure using the QEMU hardware virtualisation platform for rapid prototyping.

4.2.6 Limitations

Our test-bed platform contains several limitations. Firstly, retrieval of the hardware unique key
(HUK) is not supported by the secure world OS. According to the OP-TEE project, this is be-
cause “information about how to retrieve key data from the SoC is considered sensitive by the
vendors” and thus not publicly available [50]. The secure world OS uses a constant value as the
HUK; encrypted data can therefore be decrypted elsewhere with the same key, i.e., there is no
hardware-software device binding of encrypted data. However, the cryptographic operations that
are performed using the synthetic HUK are the same as platforms that provide direct access to
the HUK; the difference is in (hardware) key accessibility only.
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Secondly, there is currently limited support for secure off-board peripherals using the secure OS,
such as fingerprint readers and sensor hubs. While this is theoretically implementable—for ex-
ample, developing kernel-mode drivers in the secure OS to interface with a peripheral over the
SPI or I2C connectors of the board’s 40 pin expansion slot—we note that no support is provided
out of the box. This increases the complexity of conducting research against mechanisms that
protect secure world-only peripherals.

Thirdly, the chosen board does not contain eFuse banks that are used for implementing one-time
programmable (OTP) memory. We are not aware of any commercially available boards that im-
plement secure world eFuses and the remaining architecture in order to test specific attacks, e.g.,
physical fault injections that temporarily change the fuse state.

Another limitation is that the OP-TEE infrastructure does not support multiple TEEs. This is an
optional possibility in the GlobalPlatform TEE specifications, whereby multiple TEEs with inde-
pendent secure OSs and sets of TAs are maintained [27]. The envisaged scenario is to allow
OEMs to provision TEEs from competing business stakeholders without needing to bundle them
into a single environment. However, the conventional setup of modern mobile devices is to use a
single TEE with a single set of TAs at the time of writing [33]. A lack of support for multiple TEEs
is, therefore, not significantly disruptive when designing attacks and new security mechanisms for
today’s devices.

Lastly, our platform is not Common Criteria-certified. As far as we are aware, no OP-TEE boards
have been Common Criteria-certified against the GlobalPlatform TEE protection profile. This is
to be expected: the aim of OP-TEE and the development boards are to be used a reference
implementation with which to conduct research and for OEMs to prototype functionality. It is
likely the case that CC-certified devices may resist a larger set of attacks than those against
the prototype research platform. However, we are not aware of any commercially available CC-
certified platforms with the same feature set as our test-bed platform.
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Chapter 5

Summary and Conclusion

The difficulty of forensic data extraction from modern mobile platforms has increased significantly
because of their growing complexity and increasing focus on security. Today, these devices con-
tain a range of security mechanisms, such as authenticated boot chains from a hardware-based
root of trust, full-disk encryption (FDE), and trusted execution environments (TEEs) that provide
hardware-assisted isolation of cryptographic keys and security-critical applications. It is neces-
sary for law enforcement agencies to retrieve forensic evidence protected by these mechanisms
for serious crime investigations.

To this end, this report presented a white-box platform that can be used for security research
against modern mobile platforms using TEEs. It began with a detailed description of mobile
TEEs and common mobile security mechanisms, including ARM TrustZone, remote attestation,
secure and trusted boot, FDE and TEE-backed key managers. It also included a detailed descrip-
tion of the standards that govern mobile TEEs and their and security requirements, namely the
GlobalPlatform TEE specification suite. This was followed by an examination of commercial and
open-source frameworks for implementing TEEs on ARM-based devices, which were compared
against a common base of evaluation criteria.

Our white-box system is built from open-source components that can be inspected, modified and
redeployed as needed in order to develop novel extraction methods. The platform implements a
wide variety of open-source common security mechanisms and conforms to the GlobalPlatform
specifications. It uses a GlobalPlatform-compliant architecture for creating a TEE using ARM
TrustZone, as used by most of today’s mobile devices. This is built using the open-source OP-
TEE project, first developed by ST-Ericsson and currently maintained by the Trusted Firmware
project—a consortium comprising major industry players, including Google, STMicroelectronics,
ARM and NXP. The model also supports an authenticated secure boot sequence based on the
Trusted Firmware Framework, which is a widely used open-source reference implementation de-
veloped by ARM. Secure storage abstractions are also provided for protecting TEE data in line
with the GlobalPlatform TEE specifications.

In summary, the proposed white-box platform closely replicates the architecture of modern mobile
devices, which we have deployed on an ARM development board using a system-on-chip found
on several Huawei smartphone models. It is hoped that this report provides valuable details to
forensic analysts looking to develop a platform for evaluating extraction methods on devices that
use modern security mechanisms.
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Chapter 6

List of Abbreviations

Abbreviation Translation
AES Advanced Encryption Standard

ADC Analog-to-Digital Converter

API Application Programming Interface

BL Boot Loader

CPU Central Processing Unit

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EL Exception Level

EL Enhanced Privacy ID protocol

FBE File-Based Encryption

FDE Full-Disk Encryption

FEK File Encryption Key

FPGA Field-Programmable Gate Array

GP GlobalPlatform

GPIO General Purpose Input/Output

GPU Graphics Processing Unit

HMAC Hash-based Message Authentication Code

HUK Hardware Unique Key

I2C Inter-Integrated Circuit (communication bus)

LEA Law Enforcement Agency

MMU Memory Management Unit

NFC Near-Field Communication

OEM Original Equipment Manufacturer

OS Operating System

POST Power-On Self-Test

RAM Random Access Memory

REE Rich Execution Environment
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Abbreviation Translation
ROM Read-Only Memory

RoT Root of Trust

RSA Rivest–Shamir–Adleman

SCA Side-Channel Attack

SoC System-On-Chip

SPI Serial Peripheral Interface

SSK Secure Storage Key

TA Trusted Application

TEE Trusted Execution Environment

TSK TA Storage Key

TZ TrustZone

TZASC TrustZone Address Space Controller

TZPC TrustZone Peripheral Controller

TZMA TrustZone Memory Adapter

USB Universal Serial Bus
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Chapter 7

Appendix A: OP-TEE Supported Platforms

Table 7.1: OP-TEE supported ARM platforms, reproduced from [51].
Platform Publicly Available? Maintained?

ARM Juno Board 3 3

Atmel ATSAMA5D2-XULT Board 3 3

Broadcom ns3 7 3

DeveloperBox (Socionext Synquacer SC2A11) 3 3

FSL ls1021a 3 3

NXP ls1043ardb 3 3

NXP ls1046ardb 3 3

NXP ls1012ardb 3 3

NXP ls1028ardb 3 3

NXP ls1088ardb 3 3

NXP ls2088ardb 3 3

NXP ls1012afrwy 3 3

FSL i.MX6 Quad SABRE Lite Board 3 3

FSL i.MX6 Quad SABRE SD Board 3 3

SolidRun i.MX6 Quad Hummingboard Edge 3 3

SolidRun i.MX6 Dual Hummingboard Edge 3 3

SolidRun i.MX6 Dual Lite Hummingboard Edge 3 3

SolidRun i.MX6 Solo Hummingboard Edge 3 3

FSL i.MX6 UltraLite EVK Board 3 3

NXP i.MX7Dual SabreSD Board 3 3

NXP i.MX7Solo WaRP7 Board 3 3

NXP i.MX8MQEVK Board 3 3

NXP i.MX8MMEVK Board 3 3

ARM Foundation FVP 3 3
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Table 7.2: OP-TEE supported ARM platforms, reproduced from [51] (continued).
Platform Publicly Available? Maintained?

HiSilicon D02 7 3

HiSilicon Hi3519AV100 Demo Board 7 3

HiKey Board (HiSilicon Kirin 620) 3 3

HiKey960 Board (HiSilicon Kirin 960) 3 3

Marvell ARMADA 7K Family 3 3

Marvell ARMADA 8K Family 3 3

Marvell ARMADA 3700 Family 3 3

MediaTek MT8173 EVB Board 7 3

Poplar Board (HiSilicon Hi3798C V200) 3 3

QEMU 3 3

QEMUv8 3 3

Raspberry Pi 3 3 3

Renesas RCAR 7 3

Rockchip PX30 7 3

Rockchip RK322X 7 3

Rockchip RK3399 3 3

STMicroelectronics b2260 - h410 (96boards fmt) 7 3

STMicroelectronics b2120 - h310 / h410 7 3

STMicroelectronics STM32MP1 series 3 3

Allwinner A64 Pine64 Board 3 3

Texas Instruments AM65x 3 3

Texas Instruments DRA7xx 3 3

Texas Instruments AM57xx 3 3

Texas Instruments AM43xx 3 3

Xilinx Zynq 7000 ZC702 3 7

Xilinx Zynq UltraScale+ MPSOC 3 7

Spreadtrum SC9860 7 7
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Chapter 8

Appendix B: Related Projects

This appendix references related projects funded under the same topic in 2019/2020.

• RISEN: Real-time on-site forensic trace qualification.

– Coordinator: Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Eco-
nomico Sostenibile (ENEA).

– https://www.risen-h2020.eu/

– https://cordis.europa.eu/project/id/883116

• GRACE: Global response against child exploitation.

– Coordinator: Fundacion Centro de Tecnologias de Interaccion Visual y Comunica-
ciones Vicomtech.

– https://www.grace-fct.eu/

– https://cordis.europa.eu/project/id/883341

• CREST: Fighting crime and terrorism with an IoT-enabled autonomous platform based on
an ecosystem of advanced intelligence, operations, and investigation technologies.

– Coordinator: Serviciul de Protectie si Paza.

– https://project-crest.eu/

– https://cordis.europa.eu/project/id/833464

• FORMOBILE: From mobile phones to court — a complete forensic investigation chain tar-
geting mobile devices.

– Coordinator: Hochschule Mittweida (FH).

– https://formobile-project.eu/

– https://cordis.europa.eu/project/id/832800

• INSPECTr: Intelligence network and secure platform for evidence correlation and transfer.

– Coordinator: University College Dublin, National University of Ireland, Dublin.

– https://inspectr-project.eu/

– https://cordis.europa.eu/project/id/833276
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• LOCARD: Lawful evidence collecting and continuity platform development.

– Coordinator: Athina-erevnitiko Kentro Kainotomias Stis Technologies Tis Pliroforias,
Ton Epikoinonion Kai Tis Gnosis.

– https://locard.eu/

– https://cordis.europa.eu/project/id/832735

• ROXANNE: Real time network, text, and speaker analytics for combating organized crime.

– Coordinator: Fondation de l’Institut de Recherche Idiap.

– https://roxanne-euproject.org/

– https://cordis.europa.eu/project/id/833635

• DARLENE: Deep AR law enforcement ecosystem.

– Coordinator: Ethniko Kentro Erevnas Kai Technologikis Anaptyxis.

– https://www.darleneproject.eu/

– https://cordis.europa.eu/project/id/883297

• INFINITY: Immerse. Interact. Investigate.

– Coordinator: Airbus Defence and Space SAS.

– https://cordis.europa.eu/project/id/883293
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