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Executive Summary

Mobile devices, particularly smartphones, often contain relevant forensic data critical to crimi-
nal investigations. However, investigation efforts are increasingly more complicated given the
growing complexity of today’s mobile platforms. Software, firmware, and hardware configurations
differ significantly between manufacturers and even between devices from the same manufac-
turer. Furthermore, modern mobile devices contain numerous security mechanisms that hinder
the extraction of forensic evidence, such as full-disk encryption (FDE), secure boot sequences,
and trusted execution environments (TEEs).

Two widely studied areas for recovering device data are fault injection and side-channel attacks.
These approaches can bypass conventional checks used to control access to user device data,
such as password and fingerprint verification. Both attack methods focus on subverting the im-
plementation of security systems, rather than weaknesses in high-level algorithm design. Fault
injection attacks (FIAs) subject device components to unintended physical conditions and lever-
age any resulting errors to recover secret data. In contrast, physical side-channel attacks (SCAs)
use side-effects produced by a device, such as electromagnetic emissions and power consump-
tion, which can reveal secret data under execution.

This report presents an extensive survey of the state of the art in physical fault injection and
side-channel attacks on mobile devices. Over 40 research publications are examined that were
published between 2009 and 2020. From this survey, 15 attack scenarios are identified based
on the results of this body of work, including bypassing secure boot sequences, recovering en-
cryption keys, and gaining access to TEE-protected data. A comprehensive comparison of these
works is presented alongside their prerequisites, evaluated platforms, success rate, and the at-
tack scenarios. This information in this report is intended to provide an analysis of state-of-the-art
attacks to forensic investigators for when modern mobile devices are under examination.
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Chapter 1

Introduction

1.1 Background

Digital forensics is concerned with the extraction and analysis of evidence on digital devices.
Mobile devices, particularly smartphones, can contain relevant data to criminal investigations.
However, data extraction and analysis methods have significantly increased in difficulty with the
growing complexity of mobile platforms. Heterogeneous hardware and software configurations
are commonplace, even between devices from the same manufacturer. Modern system-on-chip
(SoCs), which underpin today’s mobile devices, support on-board modems and wireless connec-
tivity, graphics processing units (GPUs), and multi-core processors. SoCs also contain a variety
of security extensions, including trusted execution environments (TEEs) that provide hardware-
assisted isolation of applications and services, and cannot be accessed with privileged software
access to the device. Full-disk encryption (FDE), hardware-assisted key management, and se-
cure boot chains have also become ubiquitous. All of these measures have made it increasingly
difficult for law enforcement agencies (LEAs) to recover forensic evidence from mobile devices.

Two widely studied approaches for data extraction are fault injection and side-channel attacks.
These methods focus on leveraging weaknesses in the implementation of a security system,
rather than in the algorithm itself. Fault injection attacks (FIAs) subject the device to physical
conditions beyond that which it was intended. This includes extreme temperatures, under- or
over-volting the device’s supply voltage, and subjecting components to electromagnetic (EM)
pulses. These can cause errors in the operation of components, which can be used to recover
secret data. Physical side-channel attacks (SCAs) use side effects produced by a device while it
is being executed. These side effects, such as EM emissions and power consumption, can reveal
secret data if the side effect is dependent on the operation under execution. Both techniques can
enable data extraction without requiring user-known keys or secrets.

In this report, the state of the art in fault injection and side-channel attacks is surveyed exten-
sively. Over 40 papers are examined, published between 2009 and 2020, from which 15 attack
scenarios are drawn. These provide a road-map as to the attacks an examiner could mount dur-
ing the forensic examination of a mobile device. This includes bypassing secure boot sequences,
recovering AES and RSA keys, and gaining access to TEE-resident data. A comprehensive com-
parison of these works is given alongside their prerequisites, evaluated platforms, success rates,
and the attack scenarios to which they can be applied.
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1.2 Scope

This report is concerned with physical fault injection and side-channel attacks on mobile systems.
The focus is on attacks that exploit, whether wholly or in part, physical properties of the device,
such as EM emissions, power consumption, and acoustic emissions. Attacks that are wholly
software-based are thus outside the scope of this report. Examples of these include micro-
architectural attacks that are exploitable only with software access, e.g. cache timings and side
effects from speculative execution, and software timing attacks on security protocols and other
systems.

1.3 Report Organisation

The following chapter (Chapter 2) presents preliminary information about modern mobile device
architectures and their common security mechanisms. Chapter 3 provides a comprehensive sur-
vey of modern physical fault injection attacks, including electromagnetic fault injections (EMFIs)
and voltage- and clock-based glitch attacks. Next, Chapter 4 surveys state of the art side-channel
attacks, encompassing electromagnetic analysis, power analysis, and acoustic side-channels.
In Chapter 5, comparison tables of state-of-the-art fault injection and side-channel attacks are
presented using a common set of evaluation criteria, before discussing their broad challenges
and limitations. This chapter also discusses applicable attack scenarios of each surveyed work.
Lastly, Chapter 6 summarises and concludes this report.
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Chapter 2

Mobile Device System Architecture

This chapter summarises the system and security architecture of modern mobile devices. It
covers a high-level overview of mobile platforms and system-on-chips, before discussing mo-
bile TEEs and their security features. It ends by examining the role of secure boot, secure key
management, and full-disk encryption.

2.1 Overview

Modern mobile device systems comprise a complex and heterogeneous set of hardware, firmware
and software components. This set of components can even differ between the same handset
model due to geographic preferences and restrictions.

2.1.1 Hardware

While there are no strict limitations as to what a device may contain, original equipment man-
ufacturers (OEMs) have converged on a set of high-level components that are used widely by
mainstream manufacturers:

• System-on-Chips (SoCs): mobile devices contain at least one SoC that contains, at the
very least, the application processor (AP), RAM, ROM and persistent storage. Moreover,
modern devices often delegate long-running services—sensor hubs, Bluetooth and Wi-Fi
modules—to discrete children SoCs. This allows the relatively energy-intensive AP SoC to
remain in a low-powered state while high-frequency, lower complexity services are fulfilled
elsewhere.

• Package-on-Packages (PoPs): to minimise physical footprint, OEMs can stack multiple
ICs/SoCs using ball grid array (BGA). This produces single, densely packed unit that is
fitted to the main PCB. The Xiaomi MI 10, for example, uses a PoP containing the main AP
and a discrete RAM unit, as shown in Figure 2.1.

• Display: modern mobile devices contain (O)LED-based displays capable of supporting
high-definition resolutions, with an integrated capacitive touchscreen for user input.

• Baseband Processor (BP): older devices use dedicated baseband processor chips for
supporting radio-based communications that require an antenna. Nowadays, silicon ven-
dors integrate the BPs directly into the main SoC (see Samsung’s Exynos 980 [4]). BPs
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provide digital signal processing (DSP) services for sending and receiving data using com-
mon cellular protocol stacks, e.g., 4G LTE and 5G. BPs can be independent subsystems
that use their own real-time operating system (RTOS) and processor.

• Wi-Fi and Bluetooth: similar to baseband processors, Wi-Fi and Bluetooth transceivers
are often observed as independent subsystems on modern mobile devices (see Figure
2.1). These provide DSP and protocol support for the IEEE 802.11 and Bluetooth (Low
Energy) specifications.

• Near-Field Communication (NFC): separate transceivers that provide multi-protocol sup-
port for RFID/NFC cards, tags, and card emulation mode as per the ISO/IEC 14443, 15693,
and 18092 specifications.

• Other Peripherals: support for a multitude of input/output (I/O) interfaces to provide con-
nectivity with external peripherals. Common interfaces are General Purpose I/O (GPIO),
UART, I2C, and SPI. Specialised peripherals found on modern mobile devices include
fingerprint readers, pressure pads, proximity detectors, accelerometers, gyroscopes, and
barometers.

• External storage: discrete memory units capable of long-term persistent storage of device
data, such as embedded (eMMC) and removable memory cards.

• External connectors: OEMs have converged on a small number of physical connectors for
communicating with external devices, namely USB (USB Mini B and USB-C) and the Apple
Lightning interface.

Security Mechanisms

Specific hardware security mechanisms on modern SoCs include the following:

• TrustZone: a set of security extensions to the ARM architecture that allows a separate,
‘secure’ world to execute in parallel, outside the visibility scope of the native operating
system. See §2.3.3 for further details.

• Cryptographic co-processor: a dedicated hardware chip for performing cryptographic
operations, such as key management, digital signatures, encryption and decryption. Such
processors typically employ hardware tamper resistance.

• Tamper-resistance: countermeasures against physical tampering of the device or a par-
ticular component, e.g., tamper-proof packaging and resistance to unusual supply voltages,
clock signals, and other FIAs. Engineering debugging ports are also closed entirely, e.g.,
JTAG, or require authentication from an authorised engineer.
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2.1.2 Software

From a software viewpoint, mobile devices contain a dynamic set of user-space applications
hosted by a fully-fledged operating system (OS). The most widely deployed of these are Ap-
ple iOS and vendor-tailored implementations of Android. An analysis of leading device platform
configurations in the marketplace was provided previously in Deliverable D1.1 [44]. Mobile OSs
contain a kernel, typically Linux-based, for handling memory management; inter-process commu-
nication; process scheduling; and hardware-specific drivers for audio devices, cameras, Bluetooth
and Wi-Fi connectivity, and other peripherals.

Above the kernel layer, hardware abstraction layers (HALs) are used. A HAL provides a com-
mon interface to device-specific implementations of audio, camera, sensor and related peripheral
drivers to the upper software layers. Native C/C++ libraries are then located at the same or sub-
sequent layer, including the C standard library (Libc), Vulkan and OpenGL graphics libraries, and
audio DSP libraries. On Android systems, the Android Runtime (ART) is located here, which
translates Android application bytecode into native instructions.

The next level of abstraction is used for implementing and providing reusable high-level interfaces
to user-space applications. On Android devices, this is the Java API framework that implements
functions for managing notifications, activities, location and telephony services, and the view sys-
tem. These functions can be utilised by third-party and OEM developers in their own applications.
The highest level of abstraction is the set of user-space applications provided by the OEM or third
parties. This is the set of applications that everyday users interact with: email clients, calendars,
video players, games, banking applications, and so on. The Android software stack is shown in
Figure 2.2 that illustrates the hierarchy of various software components.

Security Mechanisms

Dedicated software security mechanisms include the following:

• Full-disk encryption (FDE): keeps users’ device data encrypted at rest, requiring user
authentication for it to be decrypted (see §2.4.3).

• Trusted execution environment (TEE): a TEE executes in parallel with the native OS and
provides security-sensitive services where the native OS cannot be trusted. On modern
devices, TEEs are used to protect cryptographic keys, biometrics data, digital rights man-
agement (DRM) systems, and mobile payments (see §2.3).

2.1.3 Firmware

The final architectural component is the firmware that bridges OEM-specific hardware and the
software stack. This comprises logic residing in on-SoC memory units that executes when the
device is first powered on but before the main OS is loaded. It is used for performing basic power-
on self-test (POST), configuring clocks and memory management units (MMUs), and initiating
the boot-loading sequence. This firmware also contains vendor-specific logic for implementing
a trusted execution environment. This layer is usually most opaque to security researchers:
implementations vary widely between devices containing different hardware architectures, with
the corresponding firmware code kept closed-source to external entities.
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Figure 2.2: The Android OS software stack [9].
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2.2 System-on-Chips (SoCs)

The centrepiece of modern mobile devices is the system-on-chip: an integrated circuit (IC) that
contains the core components for establishing a working system. Mobile devices are built ubiqui-
tously around SoCs because of their small physical footprint and greater energy efficiency versus
traditional computing systems. These are designed around the configuration of reusable semi-
conductor intellectual property (IP) blocks. IP blocks can be developed in-house or licensed from
a third party, such as ARM, and then eventually fabricated into a single IC by the SoC vendor.
A variety of IP blocks exist on the marketplace for providing application processors [18]; security
extensions and cryptographic accelerators, e.g., the ARM TrustZone and CryptoCell families [19];
and graphics and multimedia units, such as the ARM Mali series [17].

As such, today’s SoCs comprise a multitude of subsystems. High-frequency multi-core central
processing units (CPUs) with caches and memory management units are at the centre of modern
SoC design. Around this, dedicated memory units are commonplace, such as dynamic and static
RAM, ROM and flash memory. Other common subsystems are timers and clocks and crypto-
graphic co-processors for accelerating cryptographic operations, including digital signatures and
symmetric and asymmetric encryption and decryption. Integrated GPUs and audio DSP units are
also found widely for video and audio processing respectively. All of these components commu-
nicate with one another via on-SoC system buses that control and perform data transfer between
subsystems.

The precise features, performance and capabilities of a SoC varies between vendors based on
their preferences. At the time of writing, Qualcomm, MediaTek, Texas Instruments, Huawei, and
Samsung are among the most popular SoC vendors in the commercial marketplace. The reader
is referred to Table 9 in D1.1 for a comprehensive list of SoCs used by modern mobile devices [44].

2.3 Mobile Trusted Execution Environments (TEEs)

Trusted execution environments (TEEs) aim to defend security-sensitive assets from privileged
software attacks from the native OS. On mobile devices, TEEs protect cryptographic keys and
biometric authentication, payment processing, and digital rights management algorithms. TEEs
execute in parallel with the native OS and its application using hardware-assisted access con-
trol on the device’s system-on-chip. While TEEs rely on a hardware-based implementation, they
do not provide protection against a wide range of hardware attacks [74]. An array of TEE sys-
tems and paradigms have been developed by industry and academia. Today, the most common
commercial TEEs are Intel Software Guard Extensions (SGX) and ARM TrustZone. However, it
is ARM TrustZone and the GlobalPlatform TEE—a set of specifications relating to TEEs—that
pervade today’s mobile devices [14, 42, 118]. We discuss these technologies and their security
properties next.

2.3.1 High-Level Architecture

The GlobalPlatform TEE is the prevailing set of specifications for governing the architecture, man-
agement and security goals of TEEs [51, 54, 55]. It establishes two worlds of execution: the rich
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execution environment (REE)1 and the trusted execution environment (TEE)2. The GP TEE ar-
chitecture is depicted in Figure 2.3. The REE contains the mobile’s native OS, such as Android,
its firmware and user-space applications. In contrast, the TEE contains an independent security
kernel, known as the trusted OS, and a set of security-sensitive trusted applications (TAs). The
REE communicates with the TEE via a tightly controlled interface at the platform’s highest privi-
lege level, known as the secure monitor.

Figure 2.3: High-level GP TEE system architecture [51].

The secure and non-secure worlds co-exist on the same underlying platform hardware, which
execute concurrently using hardware-assisted isolation. This isolation is critical to prevent REE

1Also called the untrusted or non-secure world.
2Also called the trusted or secure world.
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adversaries from accessing secure world memory regions and peripheral devices. Upon launch,
the GP TEE must be initialised from a root-of-trust (RoT) using a secure boot process. This
process is described further in §2.4.1 for ARM TrustZone, which is the means by which Glob-
alPlatform TEEs are instantiated on ARM-based mobile devices. Ultimately, this initialisation
process must be performed without trusting or co-operating with the untrusted REE.

The GlobalPlatform TEE specifies the GlobalPlatform Internal API [52] by which trusted world
applications (TAs) communicate with the trusted OS. GlobalPlatform also specifies the Client
API [50], which standardises the communication interfaces between REE applications and the
TAs via the non-secure and secure world OSs. For the full documents, the reader is referred
to the GlobalPlatform Technology Document Library [53], where the specifications are publicly
available.

2.3.2 GlobalPlatform TEE Threat Model

The GP TEE Protection Profile (GP TEE PP) is used for a GP TEE target of evaluation (TOE)
under the Common Criteria Framework. The GP TEE PP “targets threats to the TEE assets that
arise during the end-usage phase and can be achieved by software means...focuses on non de-
structive software attacks that can be easily widespread...and constitute a privileged vector for
getting undue access to TEE assets without damaging the device itself” [55].

In broad terms, the secure monitor, TEE kernel and TAs are considered trusted. Errors in any of
these components, such as the functions it exposes to non-secure client applications and world
context switching logic, can compromise the intended services that a TEE aims to provide. With
respect to hardware, the GP TEE can have access to a secure clock, cryptographic accelerators,
and volatile and non-volatile memory. However, the TEE must access these resources without
cooperating with the untrusted REE; the GP TEE must be self-sufficient from any software or
firmware components in the untrusted REE [51, 55].

The GP TEE PP provides a series of assets and the security properties that should be satisfied,
which is reproduced in Table 2.1. It covers software and hardware assets used by the TEE and its
TAs, including TEE firmware, sources of time, run-time and persistent memory sources, and TEE
keys. The defined security requirements comprises, among others, the confidentiality, integrity,
authenticity, monotonicity and immutability of particular TEE assets. These assets should be
protected, as a minimum requirement, against two high-level REE adversary types defined in the
GP TEE PP:

• Basic remote attacker: “Performs the attack on a remotely-controlled device or alterna-
tively makes a downloadable tool that is very convenient to end-users. The attacker re-
trieves details of the vulnerability identified in the identification phase and [...] makes a
remote tool or malware and uses techniques such as phishing to have it downloaded and
executed by a victim [into the untrusted world].”

• Basic on-device attacker: “Has physical access to the target device; it is the end-user
or someone on his behalf. The attacker is able to retrieve exploit code, guidelines writ-
ten on the internet on how to perform the attack, and downloads and uses tools to jail-
break/root/reflash the device in order to get privileged access to the REE allowing the exe-
cution of the exploit. The attacker may be a layman or have some level of expertise but the
attacks do not require any specific equipment.” [55].
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It is noted that the minimum assurance level for GP TEE compliance is CC EAL2. This is lower
than other secure execution platforms, such as smart cards and secure elements. These plat-
forms are usually evaluated to CC EAL4+ and against expert adversaries possessing specialist
testing equipment, which the TEE is not designed to defend against.

Table 2.1: Minimum security requirements of GP TEE assets, from [55, 114].

Property
Asset C I AU U UP AT DB M CO IM

TEE Identifier 3 3

RNG 3

TA Code 3 3

TA Data and Keys 3 3 3 3 3 3

TA Instance Time 3

TA Run-time Data 3 3 3

TA Persistent Data 3 3 3 3 3

TEE Firmware 3 3

TEE Init. Code and Data 3

TEE Storage RoT 3 3

TA Persistent Time 3

Rollback Detection Data 3

TEE Debug Auth. Key 3 3

C: Confidentiality, I: Integrity, AU: Authenticity, U: Uniqueness, UP: Un-
predictability, AT: Atomicity, DB: Device Binding, M: Monotonicity, CO:
Consistency, IM: Immutability.

2.3.3 ARM TrustZone

ARM TrustZone is a set of extensions to the ARM processor architecture that provides a secure
world of execution; it is the main way by which the GlobalPlatform TEE is realised on ARM-based
platforms [14, 42, 118]. Like the GlobalPlatform TEE, TrustZone divides execution into ‘secure’
and ‘non-secure’ worlds that host security-sensitive and non-sensitive material respectively. Each
world can host its own independent OS and set of applications that execute at varying exception
levels aboard the device, which is illustrated in Figure 2.4. The secure world OS is a specialist
security kernel with limited functions to reduce the scope for vulnerabilities. The secure world
OS implements the respective GlobalPlatform TEE APIs, e.g. Internal API [52], and implements
memory management and process scheduling of TEE applications. Some commercially available
secure world OSs are Huawei’s iTrustee [64], Samsung’s TEEGRIS [107], Trustonic’s Kinibi [126],
and the Qualcomm TEE [101].

At run time, ARM TrustZone uses a control signal called the ‘non-secure’ (NS) bit to reflect the
world of execution. This is the main mechanism for informing the security status across the de-
vice. The NS bit is propagated through all areas of the SoC where non-secure world adversaries
may attempt to access secure world material. This includes page tables, cache lines, and bus
transactions to memory firewalls and peripheral controllers. Any unauthorised non-secure access
attempts to secure world-only resources are prevented by the corresponding on-SoC controller.
Such controllers are the TrustZone Peripheral Controller (TZPC) for protecting secure world-only

EXFILES D5.1 Public Page 11 of 58



D5.1 - Vulnerabilities Analysis and Attack Scenarios Description

peripheral interfaces, and the TrustZone Application Space Controller (TZASC) for partitioning
dynamic memory regions. Any SoC bus transactions that carry a non-zero NS bit are blocked by
these controllers depending on their configuration.

Figure 2.4: ARM exception model for v8.4-A and beyond [15].

To enable inter-world communication, messages are transmitted over a secure monitor that ex-
ecutes at the highest exception level on the ARM architecture (EL3). User-space applications
communicate with the TEE through a library by the trusted OS provider, which communicates
with a driver deployed in the OS kernel. This driver, also provided by the trusted OS provider,
uses the secure monitor call (SMC) interface to enter into TrustZone’s secure monitor mode that
securely performs the world context switch. Data is passed to the secure world kernel and then
to a target trusted application. Responses are returned using the reverse process. At boot time,
ARM TrustZone uses a secure boot process, discussed in §2.4.1 to securely authenticate and
initialise the secure monitor firmware and for loading the TEE system image. A reference imple-
mentation of the secure monitor code and bootloading process is provided as part of the Trusted
Firmware project [78], which OEMs can tailor to their own platform configurations.

2.3.4 Proprietary Systems

Proprietary systems have been developed by manufacturers that offer orthogonal services to the
GlobalPlatform TEE. Three common systems found on Samsung, Apple and Google devices are
Samsung KNOX, Apple Secure Enclave Processor (SEP), and Google Titan M respectively.

Samsung KNOX is a security platform found on leading Samsung handsets built from a TrustZone-
based TEE. The platform provides containers, known as KNOX Workspaces, that are encrypted
using keys held in the TEE. The workspaces provide secure locations in which documents,
videos, photographs and other data can be stored and encrypted automatically. As such, data
cannot be extracted from these workspaces without co-operation from the TEE to decrypt them.
At boot time, Samsung KNOX extends the secure boot process on Samsung devices to set one-
time programmable ROM (eFuse) if unauthorised boot components are loaded. If the eFuse is
set, new KNOX containers cannot be created and existing ones cannot be decrypted. The state
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of this eFuse is permanent and persists across reboots and resets [41]. Another additional se-
curity mechanism is the use of remote attestation to allow remote entities to validate the state of
the target device. That is, the remote verifier can learn, using a secure channel, if the device has
been booted with any unauthorised bootloaders by inspecting the state of the eFuse. These at-
testation messages are signed using a device-specific attestation key accessible only to the TEE,
the public key of which is used by the remote verifier to authenticate the response messages [41].

Apple’s Secure Enclave Processor (SEP) is a security co-processor on Apple devices. Very few
publicly available details exist about the SEP besides high-level features provided in Apple mar-
keting materials. However, some reverse engineering methods have been made by independent
security researchers [81]. The SEP shares similarities with ARM TrustZone and is directly ini-
tialised during the secure boot process by the boot ROM, the device’s root-of-trust. It provides
access to hardware-backed cryptographic operations, such as encryption and signing services.
The SEP uses memory encryption between internal memory and external RAM to protect data in
transit between itself and and main memory. It can also access its own set of peripherals, a bank
of eFuses, and widely used input/output interfaces, such as GPIO and SPI. The SEP has been
shown to support iOS key management and the Apple iOS biometric authentication systems, in-
cluding Touch ID and Face ID.

In 2017, Google announced the Titan M tamper-resistant security co-processor for the Pixel 2
smartphone that executes independently from the device’s main SoC [58]. The chip contains its
own flash memory, CPU, and RAM in a single package, which is resistant to physical penetration
and side-channel attacks including power and electromagnetic analysis. It is also resilient against
FIAs, such as voltage, clock and temperature faults. The Titan M stores the last known safe
Android version and prevents rollback attacks during the verified boot process on Pixel 2 and 3
devices. It also prevents attackers on the Android system attempting to unlock the bootloader.
Moreover, the Titan M is used for lock screen verification in order to deactivate full-disk encryption
and allows applications to generate and store keys via the StrongBox KeyStore APIs.

2.4 Common Mobile Platform Security Mechanisms

2.4.1 Secure Boot

Securely booting and initialising a TEE is critical to maintaining its security; the ability to load
untrusted bootloaders and TEE system images would compromise the security that it intends to
provide. Modern devices contain multiple bootloader stages of increasingly complexity. After re-
ceiving a reset signal, the first stage begins with performing basic SoC setup operations, including
power-on self-test (POST) and clock initialisation. After this, the trusted world and secure monitor
firmware is loaded, which is executed before the loading the native operating system. This en-
sures that the loading of the trusted world is not dependent on any non-secure world components.
In the final stage, the boot sequence loads the non-secure world boot image that loads the operat-
ing system and user applications. An overview of the ARM boot procedure is shown in Figure 2.5.
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Figure 2.5: The ARM boot procedure [16].
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Figure 2.6: Authenticated secure boot process.

Secure boot is the process by which this is performed in an authenticated fashion. Common
practice is to establish a sequentially verified chain beginning with a root of trust (RoT). This
is a small, typically hardware-bound and read-only trusted component like on-SoC ROM. The
RoT has secure access to a read-only public key certificate, which is used to verify the signature
of the next bootloader in the chain. Upon successful signature verification, the next bootloader
is loaded and control is passed to it. This next bootloader, which itself contains a public key,
verifies the following bootloader and loads it. This process repeats until the final bootloader is
successfully verified after which it loads the rest of the system. Bootloaders are signed using the
OEM’s private key; if signature verification fails—for example, after the loading of an unauthorised
component—then the boot process stops. This process repeats if the device is restarted while
the unauthorised component is still present. As mentioned previously, some device platforms
contain one-time programmable (OTP) fuses that are permanently ‘blown’ if signature verification
fails during the boot process [108]. The secure boot process is illustrated in Figure 2.6.

Public information is scarce regarding the specific algorithms used by OEMs for secure boot.
However, we note that the ARM Trusted Board Boot requirements, which specify the boot pro-
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cess for application processors designed to be compliant with the GlobalPlatform TEE Protection
Profile, specifies the use of SHA-256 and RSA-2048 or 256-bit ECDSA for bootloader certificates,
and AES-128 for hardware-based keys [16].

2.4.2 Secure Storage and Key Management

Mobile TEEs can provide secure persistent storage of sensitive material. At a specification level,
the GlobalPlatform TEE provides functions via the Internal Core API [52] for data ‘binding’, which
generates encryption keys from a hardware unique key (HUK) using a key derivation function
(KDF) within the TEE. These keys are used to encrypt TA and TEE key material and data; TAs
can also use these keys to encrypt non-secure world data. The keys must never leave the TEE
and, consequently, encrypted material cannot be decrypted on another device. The GlobalPlat-
form TEE specifications also supports the storage of keys and other data to external security
hardware, such as a secure element. When used, this external hardware must be accessible
only to the TEE [51]. The GlobalPlatform TEE supports a large range of algorithms that an OEM
may use for internal TEE cryptographic operations. This includes 128/192/256-bit AES in various
modes of operation, e.g., CBC, XTS, and CTR; up to 2048-bit RSA; 160- to 521-bit ECC, including
ECDSA and ECDH; and 128- or 196-bit triple DES. The reader is referred to the GlobalPlatform
Internal Core API [52] for a full list of supported cryptographic algorithms.

An example TEE key management system is the Android Keystore, which lets (user-space) ap-
plication developers generate and containerise cryptographic keys within a TEE [8]. The key
material is generated using a TEE-based secret and never exposed outside the secure world,
even if the OS is compromised. Android OS provides abstract interfaces to developers in or-
der to operate upon this material, such as encryption, decryption, and signature verification and
signing, but direct access to these keys is not given to developers. Related to this, the Android
Gatekeeper [7] performs user authentication of inputted passwords in the TEE. The Gatekeeper
enrolls user passwords by applying an HMAC with the password, identifier and a hardware se-
cret key, which is stored in the TEE. Subsequent authentication attempts involve regenerating
this value and checking equivalence. If successful, the Gatekeeper uses a TEE-derived secret
to sign and transmit an authentication message to the Keystore TA. This notifies the Keystore TA
that the user authentication secret was entered correctly and TEE-resident keys can be used.
The Gatekeeper service limits the number of failed verification attempts and prevents further at-
tempts using a timeout and counter.

On Apple devices, the Secure Enclave Processor (SEP, see §2.3.4) implements key manage-
ment for encrypting data at rest, secure boot in macOS, and biometrics. Each SEP is built with
a hardware-based unique ID (UID) from which cryptographic keys are derived, thus providing
device-binding and preventing attacks that involve memory device transplantation. Additional
class keys are derived from a user-inputted password and a hardware secret, which are used for
services such as per-file and volume encryption. Encryption keys are never directly exposed to
the device CPU. Moreover, the Apple T2 security chip, which contains the SEP, has a dedicated
AES-256 engine that is built into the direct memory access (DMA) path between the flash storage
and main system memory. This is used for fast file encryption from the naive OS using keys from
the SEP. The reader is referred to [12] and [11] for Apple-specific security guidance.
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2.4.3 Full Disk Encryption

Full disk encryption (FDE) is used to encrypt all device user data such that it cannot be readable
by an attacker who has not decrypted its contents. FDE implementations use symmetric encryp-
tion, usually AES, to encrypt data at the block level. User data is encrypted before saving to it
to disk, such as a photograph or audio file; when the data is read, the decryption procedure is
performed before returning it to the parent process. Android’s FDE implementation operates as
follows: a master key (up to 256 bits) is used to encrypt/decrypt data, which is generated and
hashed with a default password and a salt value when the device is booted for the first time. This
hash is signed by the TEE, and the signature of this hash is used to encrypt the master key.
When the user sets their PIN or password, the 128-bit key is re-encrypted and stored. Only with
successful user authentication is the FDE key released such that it can be used to decrypt the
contents of user data. Without successful authentication, the OS is not able to decrypt and read
the data [6].

2.4.4 File-based Encryption

File-based encryption (FBE) refers to the encryption of data at a filesystem level, rather than a
block or volume level as with FDE. This can allow different user profiles to exist under separate
security policies; for example, a dedicated work profile that encrypts corporate files. FBE typically
uses AES on commercial devices. On Apple devices, a 256-bit per-file encryption key (FEK) is
generated each time a file on the data volume is created by Apple’s proprietary Data Protection
module, which uses the SEP for key management. The FEK is wrapped using a class key (see
§2.3.4) and given to the hardware AES engine, which encrypts the file under the FEK as it is
written to flash memory. When a file is read, it is decrypted by the AES engine as it is transmitted
from memory. The encryption uses AES-128 in XTS mode, using 128 bits of the 256-bit key as
the cipher key and the other 128 bits as the tweak.

FBE is also supported by Qualcomm-based SoCs (Snapdragon 855 and over) [100]. Here, FBE
Credential Encrypted (CE) class keys are generated that are protected by a secret derived from a
device unique key and a synthetic password. The synthetic password is generated by Android for
each user, which is protected by the user credential, e.g. password, and (if applicable) an escrow
token for providing access to system administrators. When the device is unlocked, the FBE CE
key is decrypted and set in the Linux kernel key-ring. When the file system driver reads or writes
a protected file, the key is retrieved from the kernel key-ring and set in the proprietary Qualcomm
Inline Crypto Engine (ICE) for encrypting/decrypting files to and from memory using AES [102].

EXFILES D5.1 Public Page 16 of 58



D5.1 - Vulnerabilities Analysis and Attack Scenarios Description

Chapter 3

Fault Injection Attacks

In this chapter, the state-of-the-art of fault injection attacks is explored. It focuses on published
works that have successfully attacked mobile devices or their constituent components as a target
of evaluation.

3.1 Overview

Fault injection attacks (FIAs) are active attacks that physically perturb the device beyond its in-
tended operating conditions. The goal is to generate and observe the results of abnormal system
behaviour that an attacker can leverage to access restricted functionality and data. FIAs have a
long-standing, approximately 25 year history, and have been analysed in great depth in the wider
smart card literature [27, 5, 34, 133, 23, 94, 61]. FIAs are usually categorised as transient or
permanent, and invasive or non-invasive. Transient faults are temporary errors that the system
eventually recovers from following a reset or when the fault source stops. Their aim is to tem-
porarily disrupt the system’s control flow or corrupt the results of an instruction to gain access to
unauthorised functionality and data. Permanent faults indefinitely change the target component’s
state, which persists through device restarts and resets.

Invasive FIAs involve significant tampering to the device’s internal circuity. This includes depack-
aging the SoC or IC under evaluation, removing protective layers, and directly inducing faults
into internal components. Light pulses using high-energy light sources, near-infrared lasers, and
ion beam attacks fall under this category. These techniques have been used to flip the state
of transistors in memory cells and other components using carefully targeted beams [119, 127,
97, 109, 125, 75, 128]. Notably, Vasselle et al. [128] demonstrated a laser-based FIA to bypass
the secure boot process of an undisclosed Android smartphone with an ARM Cortex A9-based
SoC. This was achieved through physical and software-based reverse engineering of the SoC,
and decapsulation of the package. This leads to a major challenge of invasive FIAs: there is a
significant risk that components can be irreparably damaged, which can lead to the irreversible
loss of forensic evidence when a device is under examination.

We also note that attacks using visible light and UV have become less practical as transistor gate
lengths have shrank from advances in semiconductor fabrication methods. The costliest attacks
employ focused ion beams (FIB) and heavy-ion microbeams (HIMs), which operate with a high
degree of precision (2.5nm). Works by Li et al. [75] and Torrance et al. [125] have demonstrated
attacks against cryptographic systems using HIB and FIB respectively. Generally, FIB and HIM
attacks are extremely expensive ($3,000–$100,000+ USD) and require access to high levels of
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expertise, specialist laboratories and testing equipment.

In contrast, non-invasive FIAs require little-to-no tampering and their effects usually disappear
when the stimulus is removed or the device is reset. Non-invasive FIAs are performed by manip-
ulating physically accessible components to generate internal faults. Well-studied non-invasive
FIAs are voltage-based glitch attacks, which under- or over-volt the device’s intended supply volt-
age [98, 26, 123, 122, 124, 25, 90]; clock glitch attacks that under- or over-clock the device to
trigger faults [33, 2, 120, 71]; and exposing components to strong, targeted electromagnetic dis-
turbances [40, 103, 43] and extreme temperatures [70, 72, 59]. In general, non-invasive FIAs are
less costly, require cheaper and non-specialised equipment, and risk significantly less damage to
the target component than invasive FIAs [27].

A summary of FIAs, their relative complexity, precision and risk is provided in Table 3.1. In the next
sections, the state of the art in non-invasive physical FIAs—voltage-based glitches, clock glitches,
electromagnetic fault injections (EMFIs), and temperature attacks—is examined extensively.

Table 3.1: Summary of FIAs based on [27] and [75].

Technique Precision (Space) Precision (Time) Cost Skill Risk
Clock Glitch Low High Low Moderate Low

Voltage Glitch Low Moderate Low Moderate Low
Heating Low Low Low Low Moderate
EMFI Moderate Moderate Low Moderate Moderate

Light Pulse Moderate Moderate Moderate High Moderate
Laser Beam High High High High High

FIB Very High Very High Very High Very High High
HIM Very High Very High Highest High High

EMFI: Electromagnetic FI, FIB: Focussed ion beam, HIM: Heavy-ion micro-beam.

3.2 Voltage-based Glitch Attacks

Voltage-based glitch attacks manipulate the target device’s supply voltage. By under- or over-
volting this source, or redirecting it to ground to generate brownouts, an attacker can generate
single- or multi-bit faults during execution. Consequently, the processor can be coerced into cor-
rupting or skipping instructions, including security-critical verification checks. These attacks have
been used to recover cryptographic key material, skip signature verification steps, and bypass
system access control measures. The state of the art in these attacks is now described.

In 2009, Barenghi et al. [25] presented a voltage glitch attack against a software RSA imple-
mentation on a 32-bit ARM9 microprocessor (ARM926EJ-S, released in 2001). The attack ex-
ploits the relatively intensive nature of load instructions, which were found to be susceptible to
mis-executions when the device was provided a low supply voltage (underfeeding). During the
instruction fetch phase, the authors were able to induce faults to change the binary encoding of
logical operations (AND to EOR), conditional additions (ADDNE to ADDEQ), and conditional branches
(BNE to BEQ). Using this, three attacks on OpenSSL 0.9.1i were presented: (1), factoring the RSA
modulus when using the Chinese Remainder Theorem (CRT); (2), an e-th root attack to retrieve
an input message encrypted under a correct and faulted encryption; and (3), a theoretical attack
for recovering the secret key during message signing. The instruction swaps occur only a small
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number of times and “may be reduced up to a single one in the whole computation of a target
algorithm”. Due to this rate, the key recovery attack was not practical. For the first attack, 6.6%–
39% RSA-CRT computations were faulted of which 3.0%–39% were exploitable. For the second,
36.42%–62.77% of 1000 faulted runs were exploitable.

Later, Barenghi et al. [26] used the same approach—exploiting corrupted LOAD instructions—to
recover round sub-keys in the AES cipher. The attack is independent of the key length or the
number of rounds, and requires a fault-free ciphertext and a small number of faulty ciphertexts
generated from the same plaintext. The attack is demonstrated using the same hardware as [25]
using Linux 2.6 and an AES implementation based on OpenSSL. The authors show it is possible
to break AES using 100,000 encryptions with different plaintexts and 2,000,000 encryptions of
the same plaintext.

In 2016, Timmers et al. [122] presented two attacks that use a voltage-based glitch to alter the
program counter (PC) register of an ARM Cortex-A9 AP on a Xilinx Zynq-7010 SoC. It uses
an instruction corruption exploit with two load instructions (LDR and LDMIA) when the device is
under-volted, which alters the PC on 32-bit ARM architectures (AArch32). The first attack targets
the device’s first bootloader—BL1, see §2.4.1—to bypass the secure boot process. The attack
requires the BL1 image to be overwritten with a malicious payload containing shellcode and point-
ers. The fault must be injected precisely after the device has copied the shellcode into volatile
memory and while it is copying the pointers. The fault, if successful, corrupts the instruction so
the pointer is copied into the PC register, thus executing the shellcode and transferring control
to the attacker. The second attack uses the same approach to compromise the TEE after it has
booted. It exploits the scenario where the REE copies data to the TEE via a shared buffer. The
attacker loads the shellcode into the buffer and induces the fault when the world switch occurs.
The fault overwrites the PC with a pointer to execute the shellcode, therefore compromising the
secure world. 10,000 fault attacks on the LDR and LDMIA instructions were conducted. For LDR,
only a single (0.01%) glitch was successful; for LDMIA, 27 glitches were successful (0.27%). We
note that attacks on actual TEE or secure boot process on a consumer device were not shown.

Figure 3.1: Voltage-based FI glitch parameters [123].

In 2017, Timmers and Mune [123] described three voltage-based FIAs that escalate the privilege
of user-space Linux applications. The attacks assume physical access to the device and the
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ability to run arbitrary Linux applications in an unprivileged context. The glitches are performed
after carefully characterising the glitch parameters: normal voltage, glitch voltage, glitch length,
and glitch delay (see Figure 3.1). Attack one uses an FIA during the open syscall when opening
/dev/mem/ to allow an unprivileged application to map arbitrary addresses into physical memory.
This is performed using an instrumented untrusted application and injecting the fault during the
check performed by the Linux kernel, which causes it to be bypassed. Attack two uses the same
instruction corruption attack as [122] to change the PC register within the Linux kernel, triggering
system crashes as a proof-of-concept. The third attack targets the setresuid syscall to set the
unprivileged application’s process ID to root. This FIA is mounted during the kernel’s verification
process, causing it to be bypassed. The rate of successfully injecting faults was 0.53% (attack
one), 0.63% (attack two), and 0.41% (attack three).

In 2019, Qiu et al. [98] presented the VoltJockey attack on TrustZone-based systems. VoltJockey
exploits a software-based vulnerability in the SoC’s dynamic voltage and frequency scaling (DVFS)
framework. DVFS regulates the frequency or operating voltage of a multi-core processor to min-
imise its power consumption; it uses kernel drivers to control the device’s power management
integrated circuit (PMIC) through software. The authors show that this functionality can be care-
fully manipulated to lower the voltage to generate cross-core faults; the attack path is shown in
Figure 3.2. The attack assumes root access, a multi-core processor, and that the voltage of the
target multi-core processor is software-modifiable. Because TrustZone TEEs use the same phys-
ical processor as the non-secure world, the authors were able to leverage faults mounted in the
non-secure world to recover an AES key in the secure world using a reference AES implemen-
tation. This is caused by inducing byte errors in the eighth-round of the AES algorithm while it is
being executed in the secure world. Attacks on RSA signature verification are also demonstrated
using a reference RSA implementation. Here, the authors show that desired plaintexts can pass
signature verification after introducing byte faults into the RSA public modulus. This was exploited
to enable the loading of unsigned TEE applications by the TrustZone secure OS. The attacks are
conducted on the Google Nexus 6 smartphone with a Qualcomm APQ8084AB SoC. A success
rate of up to 2.2% for AES and 4.6% for RSA is shown. For non-mobile systems, similar attacks
have been mounted subsequently against the Intel SGX TEE for the X86-64 architecture [38, 99].

Figure 3.2: VoltJockey attack sequence [98].

In 2020, the NCC Group published a voltage-based glitch vulnerability on a MediaTek MT8163V
SoC (64-bit ARM Cortex-A53) [92]. These SoCs contain a one-time programmable eFuse bank
and read-only boot ROM. This acts as the root of trust in the secure boot chain (see §2.4.1) and
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for storing the initial certificate used for bootloader signature verification. The authors discover,
and successfully apply, a voltage glitch after the first bootloader is loaded from eMMC into RAM,
which skipped the secure boot signature verification check. This leads the authors to insert and
load of an unauthorised boot component that is able to perform arbitrary code execution. The
success rate of the voltage glitch was 15.21%–23.44%. While not demonstrated, the authors
posit that the vulnerability could be exploited to load an unauthorised TrustZone TEE image.

3.3 Clock Glitch Attacks

Clock glitches manipulate external device clocks, such as introducing additional clock edges (see
Figure 3.3), that can result in instruction misses and data misreads. Instruction misses are caused
by the circuit executing instruction before the processor has completed executing the previous in-
struction. Similarly, data misreads are caused by circuits attempting to read a value from a data
bus before the memory latches out the requested value in time. Historically, clock glitches have
attracted significant attention in the smart card and secure element literature [22, 82, 83].

Figure 3.3: Using a FIA to introduce an additional positive clock edge [71].

Korak and Hoefler [71] present clock glitches on the 16-bit AVR ATxmega256 and 32-bit ARM
Cortex-M0 microcontroller units (MCUs). While not strictly central mobile processors, MCUs can
comprise device subsystems, such as sensor hubs and baseband processors, which were dis-
cussed in Chapter 2. The authors were able to inject faults that generated instruction skips with
arithmetical (adds), branch (beq and breq), and memory instructions (ldr and str). It was ini-
tially found that pure clock glitches on the Cortex-M0 were ineffective, leading to a combined
approach of clock glitches and persistent supply voltage underfeeding. The ARxmega256 did not
require voltage underfeeding to generate faults. The attacks affected the fetch and execute parts
of the MCU instruction pipeline, which could be generated with high probability (up to 100%). The
test hardware was a Xilinx Spartan-6 XC6SLX45 FPGA with NXP LPC 1114 (ARM Cortex-M0)
and ATxmega256A3 extension boards. However, no practical attacks were presented on crypto-
graphic systems or security mechanisms.

Blömer et al. [33] (2014) demonstrate clock FIAs against an implementation of pairing-based
cryptography (PBC) from the RELIC toolkit [13] on an Atmel AVR XMEGA A1. Pairings are bilin-
ear maps defined over groups on elliptic curves and underpin several solutions to identity-based
encryption (IBE), key agreement, and attribute-based encryption (ABE). The authors discover
and exploit a clock glitch vulnerability that triggered the skipping of a jump instruction (rjmp) used
in the PBC implementation that led to the revealing of the secret key. At most, 4,000 experiments
are required to launch the attack (0.025%). It is noted that PBC is not a common cryptographic
primitive used in today’s mobile security mechanisms, nor is the target device a mobile SoC.
However, it is included here for completeness being the only public FIA on PBC.
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In 2017, Tang et al. [120] published the CLKScrew attack that uses software-based power man-
agement to generate faults that can be leveraged to perform cross-core attacks on TrustZone.
The attack functions in much the same way as VoltJockey [98]. CLKScrew exploits DVFS on
device SoCs—see §3.2 when examining Qiu et al. [98]—where frequency and voltage regulation
manage both the non-secure and secure worlds. The authors use software-based overclock-
ing, which is triggered in the non-secure world, to generate faults in the secure world. This is
used to perform two attacks: AES key recovery from a secure world application, and corrupting
RSA signature verification used by the secure world OS to verify TAs before they are loaded.
CLKScrew has several prerequisites: the attacker must have kernel-mode access to control the
power manager, the core clock frequency must be modifiable, interrupts must be disabled, and
the TrustZone application can be repeatedly revoked from the non-secure environment to decrypt
arbitrary ciphertexts. The work is evaluated on a Google Nexus 6 using a Qualcomm Krait-based
SoC. On average, useful faults are generated at a rate of 1.51% for the RSA attack. One in 20
faults (5%) are necessary to introduce a one-byte fault to a desired AES round in order to mount
the key recovery attack.

A difficulty with exploiting clock glitches on modern processors is the use of internal phase-locked
loop (PLL) circuits (see Figure 3.4). Indeed, we were not able to locate any attacks on the
device’s external clock in existing literature. The PLL processes the external clock into the system
clock frequency, thus acting as a filter. Consequently, traditional (external) clock glitches do
not straightforwardly influence the internal clock on today’s devices. To counter this, Selmke et
al. [113] demonstrated a novel attack against a PLL-equipped ARM Cortex-M0 processor aboard
a STMicroelectronics STM32F0308R. The authors successfully perform a clock-based FIA that
effectively overclocks the PLL to deliver deterministic perturbations in the PLL’s output frequency.
Using this, full key recovery is achieved against a software-based AES implementation in ECB
mode on the STM32F0308R. In total, 1000 faults were injected of which 16.4% were exploitable.

Figure 3.4: A microcontroller with a phase-locked loop (PLL) circuit and one without [113].

3.4 Heating Attacks

A popular FIA vector on embedded devices is expose the device to temperatures beyond its
intended operating conditions. Extreme temperatures have been known for over a 15 years to
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generate bit errors—often multi-bit errors—in DRAM memory and read and write threshold mis-
matches in non-volatile memory units [68]. In 2003, Govindavajhala and Appel [59] presented a
proof-of-concept showing that temperature-induced bit errors can lead to security vulnerabilites.
A 50W light bulb was used to increase the DRAM working temperature of a personal computer to
100◦C, which was able to generate up to 10 flipped bits per 32-bit word; successful faults could
be used with a 71.4% probability. Using these, the authors develop attacks based on these errors
that circumvent the Java type system and introduce security vulnerabilities in two commercial
Java virtual machine (JVM) implementations.

Hutter and Schmidt [65] (2013) present heating-based FIAs on an AVR ATmega162 MCU. A
low-cost laboratory heating plate is used to heat the MCU to 150◦C+, beyond its maximum in-
tended temperature specification of 125◦C. The authors discover that the IC begins to exhibit
faults between a critical heating window of 152–158◦C. RSA-CRT decryptions are then performed
at 650ms intervals over a 70 minute period, resulting in 100 faults of which 31 were exploitable
using the Boneh et al. [34] RSA-CRT fault attack to recover one of the prime moduli.

In 2014, Korak et al. [70] combined clock glitches with heating attacks in a two-pronged attack on
an AVR ATmega162 MCU. They expose the MCU to temperatures of up to 100◦C—using the at-
tack setup in Figure 3.5—that facilitates clock glitch attacks presented in earlier work by Balasch
et al. [22] on an 8-bit smart card MCU. The authors demonstrate that the clock glitches could
be applied with greater success at high temperatures to cause instruction repetition, instruction
replacement, and changing destination registers of instructions. However, attacks against partic-
ular cryptosystems or security mechanisms were not shown.

Figure 3.5: Temperature-based attack setup used by Korak et al. [70].

Kumar et al. [72] also present a combined approach like [70], but using extreme temperatures
with voltage-based glitches against an ASIC implementation of the Prince block cipher. The au-
thors show that the likelihood of voltage-induced faulty computations increases dramatically when
the ASIC is subjected to temperatures beyond 60◦C. The outputs of the faults are passed to a
software routine that performs the cryptoanalysis and secret key recovery using differential fault
analysis. On average, the full attack requires four to five successful faults that occur with a 0.1%
probability; thus, the complete attack can be employed using approximately 4,000 to 5,000 fault
injection attempts.
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We note that no heating attacks have been successfully demonstrated on modern SoCs used by
today’s mobile devices.

3.5 Electromagnetic FI (EMFI)

Another attack vector is to expose device components to strong electromagnetic pulses. For
example, Quisquater and Samyde [103] describe a fault model where Eddy currents induced in
the circuit are captured by latches in the target IC, thus generating bit faults. Electromagnetic
FIs (EMFIs) have greater spatial precision by targeting particular ICs and shielding other com-
ponents, and are typically performed through a high precision probe connected to an EM pulse
generator (see Figure 3.6). EMFIs on embedded systems have been widely studied since initial
attacks in the early 2000s on smart cards [103, 82, 83].

In 2013, Dehbaoui et al. [40] demonstrated an electromagnetic glitch on a software-based AES
implementation on a 32-bit ARM Cortex-M3 processor. The authors target the AES round counter
to induce the execution of an additional round, which enables feasible cryptanalysis. An EM pulse
generator is used to perform the EMFI between the 9th and 10th rounds, triggering effects equiv-
alent to an instruction skip3 with a high occurrence rate (up to 100%). An attack is presented
showing that the encryption key can be recovered with two correct and faulty ciphertext pairs.

Moro et al. [88] (2013) introduce a fault model for 32-bit microprocessors, targeting the ARM
Cortex-M3. The authors describe instruction and data corruption vulnerabilities by individually tar-
geting the device’s data and instruction buses. More specifically, EMFIs are successfully launched
that: (1) modify the values of LDR instructions to alter data flow, (2) generate hardware exceptions
to alter control flow, (3) replace STR instructions, and (4) modify processor registers. Empirical
analyses of the effect of EM pulse amplitude on the number and relative frequency of bitset faults
on data fetched from flash memory are presented. However, no attacks are demonstrated against
cryptographic implementations or security systems.

In 2015, Riviere et al. [105] demonstrated an EMFI that disrupts the instruction cache of an ARM
Cortex-M4, which can theoretically be generalised to all ARMv7-M models. The authors demon-
strate an EMFI with 96% reproducibility that targets the update of the target processor’s prefetch
queue buffer. Consequently, using test assembly programs designed for experimentation, four
instructions could be skipped and the following four could be replayed. Like [88], however, no
attacks are demonstrated against actual cryptographic or security systems. However, it is dis-
cussed that the fault model could be applied to CRT-based RSA, AES, and providing privilege
escalation on ARMv7-M architectures.

Cui and Housley [39] (2017) present BADFET, which leverages second-order effects of EMFIs.
They showed that faults generated in one component can trigger faults in dependent compo-
nents. A low cost test-bed ($300 USD) is presented for generating EM pulses that corrupt the
contents of target DRAM and NAND flash memory, which causes a fault in the CPU’s instruction
cache. It is here that a large portion of bootloader code is loaded. The authors then demonstrate
an attack that faults the secure boot procedure to cause the primary bootloader to skip into an
unreachable code region that contains a debugging command line interface (CLI). Using this, the

3The authors disclose that a hardware forensic analysis was not conducted of the target processor and, thus,
cannot conclude for certain whether an instruction skip actually occurred.
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authors load a separate binary that exploits a pre-existing vulnerability in the device’s TrustZone
SMC implementation (see §2.3.3) to achieve arbitrary code execution in the TEE. A Cisco 8861
IP Phone with a Broadcom BCM11123 SoC is used as the target of evaluation. Following the
initial proof-of-concept, the authors were able to replicate the attack 72 out of 100 retries (72%)
on the same device.

Liao and Gebotys [77] (2019) describe EMFIs with overclocking for targeting the prefetch stage of
an 8-bit MCU (Microchip PIC16F687). The attacks trigger bit-level corruption of opcodes, causing
instruction replacement faults within specific programs under evaluation. An exclusive-or (xorwf)
and move-literal (movlw) instruction were particularly vulnerable, which could be replaced with
other instructions with a 1.8%–98.7% frequency, including go-to (goto), inclusive-or (iorwf) and
bit-clear (bcf). An attack on AES is presented showing that, on average, 222 EM pulses and 5.3
plaintexts were needed for full key recovery. The authors speculate that successful instruction
replacements with goto could be potentially exploited to bypass authentication checks during a
device’s secure boot process. However, no experiments were conducted to this end. It is noted
that the PIC16F687 required backside decapsulation, which renders the attack invasive.

Figure 3.6: EMFI attack setup used by Menu et al. [84].

Menu et al. [84] (2019) present data corruption EMFIs on the transfer bus from flash memory
to the 128-bit data buffer of an Atmel SAM3X8E MCU with an ARM Cortex-M3 processor. The
attack enables resetting between zero and 128 bits with byte-level precision. It also allows the
targeting of the device’s pre-fetch mechanism without disturbing or corrupting the code execution.
Three components are shown to be vulnerable: the Flash memory, the 128-bit pre-fetch buffer,
bus interfaces, and the register file. The authors target a public software implementation of AES
and assume the key is stored in Flash memory. In the first attack, an EMFI directly sets or resets
the whole key as it is fetched from memory, using the attack setup in Figure 3.6, which was shown
to be 100% repeatable. The second study applies an attack by Biham and Shamir [32], which as-
sumes that the attacker can collect ciphertexts of known plaintexts while progressively resetting
one bit of the secret key until a zeroed key is reached. The authors leverage this to reduce the
key-space of the 128-bit AES key to 16 × 28, which can then be feasibly brute-forced. The last
study provides a fault attack that requires a persistent fault in one or more S-box look-up table
elements. Any encryption with this corrupted S-box results in a faulty ciphertext if the corrupted
entry is accessed during the encryption. The authors show that the AES key entropy can be
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reduced to 32-bits when four elements of the S-box are corrupted using EMFIs.

Elmohr et al. [43] (2020) mount EMFIs on an ARM Cortex-M0 on a NXP LPC1114 MCU. An EMFI
corruption fault is discovered in the MCU’s instruction pipeline. This occurs during the execution
stage of a load instruction (LDR), thus potentially giving access to unauthorised data. Using a
small test program, this fault occurs in cases when a branch (BNE) instruction is being fetched at
the same time. The faults occur with a frequency of 31%, 13%, 12% and 12% for faulting two,
three, four, and five instructions at once respectively. Like [77], the LPC1114 required decapsu-
lation due to its external shielding, thus rendering the FIA invasive and tamper-evident.

Gaine et al. [46] (2020) presented an EMFI privilege escalation attack on a 64-bit SoC using four
embedded ARM Cortex-A53 (up to 1.2GHz) CPUs on a mobile development board. The target
uses Yocto Project (Sumo)—a Linux distribution tailored to hand-held and embedded devices—
with version 4.14 of the Linux kernel. EM pulses were generated using an injection probe upon
an XYZ motorised stage, as shown in Figures 3.7 and 3.8. The authors characterised the tempo-
ral and spatial requirements of the EMFIs using initial investigations on a test program; only one
CPU on the target SoC was sensitive to EMFIs. An instruction skip vulnerability is discovered
and exploited on a conditional branch instruction (cbz) used in the string comparison (strcmp) C
function. This is used to bypass the password comparison procedure used by the substitute user
Linux command (su). After implementing a trigger in libpam (the pluggable authentication mod-
ule), which performs the password procedure, a successful EMFI is performed every two minutes
for the same CPU with a fixed frequency and fixed probe position (overall success rate of 2%).
The authors are also able to perform the EMFI with DVFS activated. Here, 21 of 6000 FIs were
successful (0.35%), equivalent to a success every 300 attempts (15 minutes).

Figure 3.7: EM probe used by Gaine et al. [46].

Figure 3.8: High-level attack setup used by Gaine et al. [46].
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Chapter 4

Side Channel Attacks (SCAs)

In this chapter, the state of the art of non-invasive side-channel attacks (SCAs) on mobile devices
and their related components is surveyed.

4.1 Overview

Rather than identifying and attacking weaknesses of an abstract algorithm, side-channel attacks
(SCAs) exploit physical side-effects in its real-world implementation. It is well-known, for exam-
ple, that vulnerable implementations of widely used cryptographic algorithms can leak information
depending on the key and data upon which they are applied. The exploitation of such side-effects
have received tremendous attention by the research community for over 20 years, and continue
to plague security systems today [37, 56, 130, 131, 134].

Of interest to this report, physical SCAs exploit distinguishable environmental or electrical prop-
erties exhibited by devices during execution. Operations can be determined from their power
consumption (power analysis), electromagnetic emissions (EM analysis), and more [1, 47, 134].
These properties have been exploited for key recovery from vulnerable cryptographic algorithm
implementations, including AES and RSA. Side-channel analysis has also been used for soft-
ware profiling; that is, discerning the instructions used by firmware or another component, which
can assist reverse engineering efforts in black-box settings. While power and EM analysis are
the most studied physical side channels, others have been explored in the mobile security liter-
ature. These include smudge attacks, which exploit residues left on user interfaces to recover
user authentication secrets, such as PINs and passwords; acoustic cryptanalysis, which leverage
differences in sound waves during execution; and temperature attacks, which use temperature
signatures as a side channel.

In the following sections, the state of the art of physical SCAs is reviewed. The focus is placed on
methods that are directly or potentially useful for subverting modern mobile security mechanisms
in a non-invasive fashion. This includes power and EM analysis attacks conducted on microcon-
trollers up to modern system-on-chips, and other relevant side channels that could be applied by
a forensic analyst.
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4.2 Power Analysis

Power analysis is the study of power variations consumed by the device under investigation to re-
cover information about its internal function. Components contained within today’s mobile devices
contain millions of transistors that act as voltage switches. During execution, these components
are switched on and off, causing measurable voltage fluctuations. Moreover, charge movements
through the circuit to other transistor gates, wires etc., produce electromagnetic radiation emis-
sions that can also be measured [69, 60, 93, 86, 85].

Several techniques have been employed for recovering data by statistically analysing power con-
sumption waveforms, or traces. Simple power analysis (SPA) directly uses waveforms to identify
particular instructions under execution and their corresponding cryptographic operation. These
operations can be chained together to determine the data and the secret key upon which the
operation is applied. A more advanced technique, first presented by Kocher et al. [69], is differ-
ential power analysis (DPA). DPA uses statistical analysis of multiple traces and ciphertexts to
infer secret data under execution; it is based on computing correlations between the Hamming
distance of intermediate cryptographic operations and the power trace to determine key bytes.
Template analysis involves collecting a set of initial traces and labelling their corresponding op-
eration. Newly measured traces are then classified by mapping it to its closest related template
from this set. More recently, machine learning and deep learning has been used to build more
complex statistical models for analysing traces and operations. Power analysis side channels
have been researched extensively in the smart card and FPGA literature for over 20 years. Yet,
despite this, power consumption analysis has found limited utility on mobile SoCs. This section
briefly covers recent work on embedded systems for completeness.

One of the main uses of power analysis has been for instruction profiling low-powered devices.
This enables an attacker to identify particular instructions under execution on a device. This has a
multitude of applications like detecting unauthorised software and reverse engineering black-box
programs. In this area, Msgna et al. [89] (2014) showed that power consumption could be used to
recognise individual instructions of an ATMega163 microcontroller with 66.78%–100% accuracy
using template-based analysis; Figure 4.1 shows a sample one-cycle trace of four ATMega163
instructions. Park et al. [95] (2018) developed a classification model that achieved an instruction
recognition rate of 99.03% AVR ATMega328P MCU. However, to the best of our knowledge,
similar attacks have not been successfully applied to mobile SoCs.

Figure 4.1: Power consumption of the NOP, MOV, ADD, and SUB ATMega163 instructions [89].

As stated, machine learning and deep learning has generally superseded traditional power analy-
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ses based on carefully crafted statistical models. These techniques can perform feature extraction
and classification of thousands, sometimes hundreds of thousands, of traces in a less parametric
fashion. Heuser and Zohner [63] (2012) present the use of support vector machines (SVMs), a
supervised machine learning algorithm, to perform profiled power analysis. The authors use an
8-bit AVR ATMega-256-1 MCU (8MHz clock) upon which a software-based AES implementation
is executed. The AES S-box is used as the profiling target, and the SVM is used to classify the
Hamming weight of the S-box value against the power consumption. The authors show that the
AES key can be recovered within 20 traces in low-noise environments and up to 60 traces in
high-noise environments. Since 2011–2012, a wide variety of work has been published on ML-
based SCAs in a number of application areas besides power analysis. The reader is referred to
the survey paper by Hettwer et al. [62] for a comprehensive treatment of these works.

Deep learning (DL) methods currently represent the state of the art in power analysis. Deep
learning models—neural networks with multiple hidden layers—enable complicated feature ex-
traction from collected traces and the ability to capture complex, non-linear interactions between
these features. Maghrebi et al. [80] (2016) presented some of the first results of DL methods
applied to AES key recovery. Similar to [63], the authors target an intermediate value of the
AES’s first-round S-box produced as a function of the plaintext and the secret key. For the first
set of experiments, the authors attack an unprotected FPGA-based AES implementation, show-
ing that key recovery can be achieved with 200 traces using a deep convolutional neural network
(CNN). Secondly, an unprotected AES implementation aboard a Chipwhisperer is attacked—a
development board for side-channel analysis based on an AVR ATMega328P MCU. Using an
autoencoder neural network, the first four AES key bytes could be recovered with 20 traces. In
the final experiment, the authors develop a masked AES implementation for the Chipwhisperer.
In the best case, an autoencoder and CNN was able to recover the secret key with 500 and 1000
traces respectively.

In 2018, Picek et al. [96] explored the use of CNNs and traditional machine learning approaches,
such as XGBoost and Random Forests. The authors attack the Hamming weight power consump-
tion of the first AES key byte in the first S-box operation. Protected implementations of AES are
also examined, which are collected from a Atmel AVR MCU. The authors use the DPAcontestv2
dataset with 50,000 traces. Using this, a 91.2% test accuracy was achieved when using CNNs to
classify the correct Hamming weight. However, it is noted that simpler methods were also used
effectively. All evaluated methods—XGBoost, Naı̈ve Bayes, Random Forest, and CNNs—were
able to recover the secret key in fewer than 10 traces. A similar approach has been used by
Wang [130] (2019), which uses CNNs to perform key recovery against two AVR ATXmega128D4
MCU boards using a 128-bit AES implementation in ECB mode. Notably, the average number of
required attack traces for full key recovery differs significantly between the boards during experi-
mentation, requiring 160.3 and 400.2 traces for each of the evaluation boards.

In other power-based SCAs, Schmidt et al. [110] (2010) exploit the small but measurable power
consumption of exposed IC input/output pins. This is an alternative method for whenever the di-
rect measurement of power supply lines is not possible, which is often the case on modern mobile
devices without invasive intervention. The authors test five devices: an 8-bit Atmel ATMega163
MCU, an 8-bit Atmel AT89S2853 MCU, an NXP LP2148 MCU with a 32-bit ARM ARM7TDMI-S
microprocessor, a Virtex-II Pro XC2VP7 FPGA, and an ASIC. Each device contained an imple-
mentation of 128-bit AES without any side-channel countermeasures. Plaintexts are sent to the
device over a serial interface with an oscilloscope measuring the voltage on the I/O pin. DPAs
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are conducted successfully on all five devices; however, the exact number of traces necessary to
mount the attacks are not provided.

In 2019, Gnad et al. [56] successfully mounted correlation power analysis attacks against AES-
128 on mixed-signal SoCs aboard Internet of Things (IoT) devices. The attack uses power anal-
ysis to exploit voltage noise generated by digital subsystems that perturb the signals of on-SoC
analog-to-digital converters (ADCs). The threat model is a malicious program aboard the de-
vice that wishes to recover the secrets being executed by another. The authors evaluate this
side-channel using a ESP32-devkitC, STMicroelectronics STM32L475 IoT Node, and the STMi-
croelectronics STM32F407VG Discovery. Software is also developed for performing AES-128 for
single encryptions of 128-bit plaintext messages, which was implemented using the mbedTLS li-
brary. Using correlation analysis, ciphertext-based key recovery is successfully performed on the
last round of AES using a dataset of 10 million ADC noise traces.

4.3 Electromagnetic Emission Analysis

Using EM analysis to compromise security systems dates back to 1943 when a Bell Telephone
engineer discovered oscilloscope perturbations while using an encrypted teletype: the Bell Tele-
phone model 131-B2. The next landmark was the publication of a partially de-classified 1972
NSA paper documenting the beginning of the TEMPEST program4 [132, 45]. Since then, EM
analysis has been researched extensively to break security and cryptographic systems, from
smart cards to modern high-frequency system-on-chips. This section looks at the state of the
art in EM-based SCAs on mobile devices. Unlike power analysis attacks, EM analysis has been
successfully applied in several works to mobile devices.

In 2011, Aboulkassimi et al. [1] presented results of the first EM-based SCA investigation on a
modern mobile device. The authors target a software-based AES implementation executing on
the Java Platform, Micro Edition (Java ME). Experimentally, trigger signals are sent via the de-
vice’s microSD card interface, with a commercially available EM probe and oscilloscope used for
EM signal acquisition (see Figure 4.2). Two novel techniques are proposed: a spectral density-
based approach (SDA) and template-based resynchronisation approach (TRA). These overcome
the difficulties in performing EM-based correlation attacks due to the garbage collector and just-
in-time (JIT) compiler, which introduce temporal distortions in the EM traces. Using the proposed
template-based resynchronisation approach, the authors recovered one byte of the AES key in
one-hour after analyzing 250 traces on an undisclosed device with a 32-bit RISC processor and
370MHz clock frequency.

In 2012, Kenworthy and Rohatgi [67] demonstrated side-channel attacks on three undisclosed
mobile devices using elliptic curve cryptography (ECC), RSA and AES. The first device—a “4G
LTE smart phone from a major manufacturer”—is used to perform 2048-bit RSA-CRT encryp-
tion, which is a self-written implementation using the square-and-multiply approach. From only
a single trace, the authors are able to recover the secret RSA-CRT exponents using a modest
test bench—a Yagi antenna, magnetic probe, an ICOM 7000 receiver, and an Ettus Research
USRP digitizer—costing $1000 (USD) at the time of writing. The second device, a mobile PDA,
is used to perform elliptic curve point multiplication over P-571 using a self-written double-and-
sometimes-add implementation. Here, the authors are able to perform full key recovery using a

4TEMPEST: Telecommunications Electronics Materials Protected from Emanating Spurious Transmissions.

EXFILES D5.1 Public Page 30 of 58



D5.1 - Vulnerabilities Analysis and Attack Scenarios Description

single trace with an EM probe located approximately three meters (10 feet) away from the device.
The third device, “another mobile phone from a major mobile manufacturer”, uses the platform
AES-128 library to perform AES-CBC encryption on a 200kB data buffer. In this experiment,
traces corresponding to 12,500 individual AES block operations were required to perform key
recovery using EM-based DPA.

Figure 4.2: Experimental setup used by Aboulkassimi et al. [1].

Montminy et al. [87] (2013) demonstrate the extraction of an AES encryption key running on a 32-
bit processor with a 50MHz clock frequency. The device under test is a Stellaris LM4F232H5QD
MCU with an ARM Cortex-M4F, which is used to run a software implementation of AES-128 in
ECB mode. The main acquisition equipment used is a near-field probe and a software-defined
radio to collect EM emission waveforms, including a modified digital television received costing
$20 (USD) at the time of publication. Using this, the authors successfully mount a correlation-
based analysis attack to extract all AES key bits using 100,000 traces.

Nakano et al. [91] (2014) present SPA attacks on ECC and RSA implementations running on an
undisclosed Android smartphone with a clock frequency of 832MHz. The authors target the ECC
and RSA implementation provided by the Java Cryptography Extension (JCE) library on Android
OS to recover the secret keys. The RSA implementation uses a square-and-multiply approach,
which has been shown in much previous work, e.g. [67], to be vulnerable to side-channel anal-
ysis. Similarly, ECC double-and-multiply operations are also exploited as in [67]. Analysis at the
10 MHz and 20 MHz frequencies yielded the best results for key recovery, which was achieved in
a single trace for both algorithms.

In 2015, Balasch et al. [21] presented EM-based DPA attacks on a 32-bit ARM Cortex-A8 pro-
cessor running at a 1GHz clock frequency. The authors attack a publicly sourced software-based
AES-128 implementation executing on a Texas Instruments AM3358 Sitara SoC on a Beagle-
bone Black single-board computer (SBC). This system is running a fully-fledged Linux distribu-
tion based on Debian 7 with kernel version 3.8.13-bone47. Interestingly, the authors attack both
unprotected and masked versions of the algorithm, the latter intended to thwart side-channel
analysis. In total, up to 1,200,000 measurements were required to break the masked algorithm
using first-order DPA, while 400,000 were required to successfully mount a second-order DPA.
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Using the unprotected algorithm, only 10,000 traces were required for full key recovery.

Goller and Sigl [57] (2015) examine the use of radio waves to attack an RSA implementation on
five unnamed smartphones5. The authors removed the device’s shielding plate for stronger EM
emanation and used a high-gain antenna attached to a probe that was placed on a capacitor near
the main CPU. A C program was developed using the Android SDK that included a square-and-
multiply RSA implementation, and the EM waveforms that emanated during its execution were
collected using a software-defined radio. The waveforms are shown to clearly correspond to the
bits of the key being processed, as shown in Figure 4.4. With the shielding plate installed, 276
traces were required to perform full key recovery with high confidence (0.999 correlation), while
170 traces were required without the shielding plate.

Figure 4.3: Device under test used by Goller and Sigl [57]. The red cross denotes the optimal
placement location for the EM probe.

Longo et al. [79] (2015) investigate the feasibility of EM-based DPA against an AES implementa-
tion running on a gigahertz CPU. The target platform is a BeagleBone Black SBC with a Texas
Instruments AM335x SoC and a 1GHz ARM Cortex-A9 CPU. A software implementation of AES-
128 in CBC mode is used as the target cipher, which is taken from OpenSSL; an implementation
of AES-256-CBC aboard an undisclosed cryptographic co-processor is also examined. In both
cases, DPAs were mounted successfully. For the software implementation, 20,000 traces were
required to produce the correct key hypothesis. Meanwhile, the security co-processor required
500,000 traces to be analysed. Notably, of interest to this report, the authors mention that the
cryptographic co-processor DPA is likely to be useful against implementations of full-disk encryp-
tion (FDE). While no experimental evidence is presented for this use case, it is one of the very
few papers to attack a cryptographic co-processor.

In 2016, Belgarric et al. [29] discovered that the elliptic curve digital signature algorithm (ECDSA)
in Android’s standard cryptographic library was vulnerable to EM analysis. In particular, the au-
thors show that ECC addition and multiplication operations can be distinguished. Full key ex-
traction is demonstrated by placing an electromagnetic probe within an open case of the phone.
Traces are triggered via the USB interface and subsequently measured using an oscilloscope.
The attack is conducted against an undisclosed phone with a Qualcomm MSM7225 SoC. As a
use case, the authors attack and succesfully compromise an Android-based Bitcoin wallet key.

5The serial number of one board pictured in the paper corresponds to a Samsung Galaxy S3 (see Figure 4.3).
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Experimental evidence is presented showing that up to 39 ECDSA signature traces were required
for full key recovery, which took 102 seconds at most.

Figure 4.4: Average of 1063 EM traces using the square-and-multiply algorithm. The grey regions
show the recovered key bits [57].

Similar results were presented concurrently by Genkin et al. [47] (2016). The authors also demon-
strate full key recovery on ECDSA using the OpenSSL implementation on iOS and Android de-
vices. The attack is less invasive than [29], requiring only a magnetic probe placed in proximity
of the device, or a power tap on the USB charging cable, and does not require any hardware or
software triggers. In the work, ECDSA is exploited experimentally using a Sony-Ericsson Xperia
X10 and iPhone 3GS as the devices under test. In total, 5000 signature traces were collected
and analysed across the devices, two of which (0.04%) could be exploited to recover the key.

Saab et al. [106] (2016) describe an EM-based DPA attack on a single-board computer with an
Intel CPU. In particular, the authors target Intel’s AES-NI cryptographic instruction set extensions
on the Intel Core i7 Ivy Bridge microprocessor, using an Intel Core i7-3517UE as the target of
evaluation. A dedicated application was targeted in C that made calls to Intel’s AES-NI sample
library (version 1.2), which looped over a group of AES-256 (CBC mode) calls to the assembly
routine iEnc256 CBC. After collecting 1.5 million traces over 17 days, the authors discover statis-
tically significant Hamming distance leakage, which was due to loading differences in the CPU’s
cache. A second attack is described that also uses Hamming distance information leakage, but
this time caused by the mixing of the round key between successive rounds. For this attack, the
authors collected approximately 1.3 million power measurement traces over 22 days.

Bukasa et al. [36] (2017) present the first investigation into EM SCAs on ARM TrustZone. The
authors present an empirical analysis of power analysis on an unprotected AES implementation
and a PIN verification algorithm. A Raspberry Pi 2 is used as the device under test, which uses
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a Broadcom BCM2836 SoC with a quad-core ARM Cortex-A7 at 900MHz. The effect of multi-
core versus single-core execution is examined alongside secure-world versus non-secure world
execution. A templating approach is employed using 150,000 EM traces as the training set; a suc-
cess rate of 17.81%–38.30% is then demonstrated depending on the system configuration. The
scenario of multi-core execution in the secure world produces the lowest success rate (17.81%),
while single-core execution in the non-secure world with the MMU disabled produces the best
results (38.30% success).

In 2018, Camurati et al. [37] showed that mixed-signal SoCs—those that contain a CPU and
radio transceiver on the same die—can exhibit EM leakages. This occurs because the CPU
noise is modulated into the (analog) radio transceiver’s emissions, leaving an exploitable and
non-invasive attack vector. This technique is evaluated on a Nordic Semiconductor nRF52832, a
Bluetooth SoC with a 2.4GHz transceiver and an ARM Cortex-M4 CPU; and a Qualcomm Atheros
AR9271, a wireless 802.11N SoC. It is shown that AES keys can be recovered at a distance of
10 meters by observing EM emissions in the 2.4GHz spectrum. The authors use tinyAES and
mbedTLS as two software-based implementations of 128-bit AES. Key recovery is demonstrated
on tinyAES at a 10 meters distance using 70,000 traces for offline template creation and 428
traces to perform the actual attack using template-based analysis. For mbedTLS, a successful
attack is mounted at a distance of 1 meter, which required 40,000 traces.

Alam et al. [3] (2018) present the One&Done attack that enables the recovery of RSA encryption
keys from a single decryption trace for OpenSSL (version 1.1.0g). Interestingly, the attack is ef-
fective even against a 2048-bit fixed-window, constant-time RSA implementation, and when the
plaintext message is unknown or randomised (blinded). The attack, which is based on modelling
potential control flow transitions of Montgomery multiplications, examines frequencies at 40 MHz
around the target devices clock frequency. Two Android mobile phones are used for evaluation:
a Samsung Galaxy Centura SCH-S738C with a 800MHz Qualcomm MSM7625A SoC using an
ARM Cortex-A5 CPU, and an Alcatel Ideal with a Qualcomm Snapdragon 210 MSM8909 and a
quad-core ARM Cortex-A7 CPU. A single-board computer is also evaluate with an Allwinner 13
Cortex-A7 CPU. During experimental validation, 95.7%–99.6% of the target key’s bits are suc-
cessfully recovered depending on the evaluated platform.

In two papers in 2018 and 2020, Benadjila et al. [30, 31] explore deep learning-based analysis
of EM traces. The authors present a comprehensive analysis of the application of convolutional
neural networks to perform key recovery by classifying the Hamming weights of intermediate
cryptographic operations. The target platform is a software implementation of AES executed on
an 8-bit AVR microcontroller (ATmega8515) using masked and unmasked versions. A publicly
available dataset, the ASCAD dataset, is released to facilitate future research in the domain. Sur-
prisingly, it is found that the common VGG-16 DL network architecture used for image recognition
can be effectively applied to side-channel analysis.

Wang et al. [131] (2020) present a deep learning-based SCA on AES from device EM emissions.
The authors train three neural networks—two convolutional neural networks (CNNs) with different
layer configurations and one multi-layer perceptron (MLP) network—on traces captured from five
different Bluetooth devices at five different distances from the target device. Like [37], the Nordic
Semiconductor nRF52832 SoC is used along with a 128-bit AES implementation provided by the
tinyAES C library. 500,000 traces are collected, which are distributed across various distances
from the device (wired connection, then 1m–8m) and in different locations (an office and corridor
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environment). In the best case, 367 traces of the same encryption were required to recover an
AES subkey at a distance of 15m from the device.

4.4 Other Non-Invasive Side Channels

Smudge attacks are another physical side-channel widely researched in the mobile security lit-
erature. These attacks, first formalised by Aviv et al. [20] in 2010, exploit residue patterns left
by mobile users fingers on mobile touch screens. These residue traces can directly reveal or
substantially reduce the search space of mobile-based user authentication secrets, e.g., patterns
and PINs (see Figure 4.5). In [20], it is shown that a partial Android pattern was retrievable in
approximately 96% of cases without any countermeasures, such as wiping the screen after every
attempt. The complete pattern was retrievable in 68% of experimental setups. It is discussed
that users tend to select patterns that follow symmetrical variations and other biases, which do
not reflect a truly random pattern. In practice, these biases reduce the search space significantly.
In the most complex scenarios, where patterns are constructed unnaturally—for example, tight
angles and long distances between sequential nodes—smudge residues reduced the possible
search space by 50%.

Several countermeasures to smudge attacks have been proposed in the literature, including
changing the screen position of the pattern input matrix and colouring the nodes whose position
changes between attempts [129]. However, none of these have received widespread commercial
deployment, and the Android pattern algorithm is still largely unchanged since the formalisation
of the attack class by Aviv et al. [20]. Smudge attacks may offer a relatively primitive, low-cost
side channel to access user data aboard touchscreen-equipped mobile devices.

Figure 4.5: Smudge residue left following a pattern-based authentication attempt [129].

Another popular side-channel, albeit with limited application in the mobile security literature, is
acoustic cryptanalysis. This involves analysing sound waves produced by a vulnerable security
system whose emitted pitch is dependent on the current operation. In 2014, Genkin et al. [48]
showed that RSA key extraction using acoustic cryptanalysis is feasible against a Lenovo laptop.
The authors target GnuPG’s RSA implementation and, using a laboratory microphone setup and
a Samsung Note II, show that a 4096-bit key can be recovered within one hour using audible and
ultrasonic sound emanations.
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Lastly, temperature is another potential side-channel that has also received limited attention in the
mobile literature. Hutter and Schmidt [65] (2013) demonstrate that information leakage occurs on
an 8-bit AVR ATmega162 MCU by monitoring its temperature using a PT100 sensor element with
a 100ms thermal response time. As a proof of concept, the authors use the move (MOV) instruction
to move all possible values of one input byte (i.e. 256) to 24 internal registers. This is measured
for a period of 20 seconds in a loop. The authors demonstrate that the temperature increases
depending on the Hamming weight of the processed value. However, it is noted that a full key
recovery attack is not shown. Moreover, the attack vector is appropriate only for implementations
with long-running operations that create low-frequency signatures. It is unlikely to be directly
applicable to the high-frequency processors of today’s mobile platforms.
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Chapter 5

Evaluation

This chapter contrasts the state-of-the-art of FIAs and SCAs; presents a common comparison
framework to compare the requirements, evaluated platforms and attack scenarios for each work;
and examines their challenges and limitations.

5.1 State of the Art Comparison

The previous two chapters showed that a wide range of devices and techniques have been de-
ployed in recent literature to attack mobile devices and constituent or closely related components.
To compare these works, a set of evaluation criteria is used to compare both attack families using
a common framework. The aim of this criteria is to provide the reader with a digestible sum-
mary of the requirements, security targets, and attack scenarios that applies to each work. The
evaluation criteria used is as follows:

• Work and year: the work under comparison and its year of publication. Intuitively, older
attacks are often evaluated against obsolete platforms that may not generalise to today’s
modern test devices; for example, countermeasures may have been deployed as a result.

• Type: the type of SCA or FIA that was used, such as clock glitch, EMFI, or electromagnetic
or power analysis.

• Evaluation platform: the platform that was evaluated and was successfully attacked; for
example, the device, SoC or microprocessor model. Similarly, it is the case that some works
evaluate only a small set of platforms, often only a single one, and may not generalise to
modern devices. Moreover, a device of interest may have already been attacked directly in
related work.

• Attack prerequisites: any preconditions that are necessary for launching the attack, such
as having user-space access, accessible hardware, or a particular processor architecture.

• Implementation: the implementation targeted by the SCA or FIA. This may be a propri-
etary OEM implementation, an open-source library, or a bespoke custom implementation
developed specifically for the attack. We also evaluate whether the authors integrate a
trigger in the implementation to initiate the FIA or the SCA measuring process.

• Success criteria: the required number of faults or traces to successfully conduct the attack,
or the accuracy of the proposed attack method (if applicable). Attacks that have low success
rate might be economically unviable if a substantially large number of attempts are required
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to perform a successful SCA or FIA. The examiner may pursue an alternative strategy if the
success rate is prohibitively low during preliminary analysis.

• Attack scenario: this presents general attack scenarios that are examined in each sur-
veyed work, which are expanded upon in §5.2.

Table 5.1 provides a comprehensive comparative summary using the above criteria for state-of-
the-art fault injection attacks surveyed in Chapter 3. A separate comparison is provided in Table
5.2 for side-channel attacks surveyed in Chapter 4.

5.2 General Attack Scenarios

The existing FIA and SCA literature covers a multitude of attack scenarios, such as software-
based AES key recovery, privilege escalation, and subverting the secure boot process. To assist
practitioners and security researchers, each work in Tables 5.1 and 5.2 has been mapped to one
or more of the below attack scenarios depending on their applicability.

AS1 Secure world privileged access: gain control of the kernel space of the TEE secure
world. This enables privileged access to other valuable targets on the device, including
TEE secure world applications in lower protection levels, device drivers to security-critical
peripherals, and TEE memory management.

AS2 Secure world AES/RSA/ECC key recovery: perform key recovery attacks against security
services that use the AES, RSA or ECC cryptosystems in the TEE secure world. Relevant
works could be useful when attacking TEE-based key management (keystore) systems and
FDE implementations, which were discussed in Chapter 2.

AS3 Load unauthorised TEE applications: gain the ability to load unauthorised applications
into the TEE. This can be used to further interrogate the TEE secure world to understand
its internal operations and attempt privilege escalation attacks against the TEE OS.

AS4 Bypass secure boot verification checks: bypass boot-time procedures that enforce the
loading of authorised bootloaders, i.e., OEM-signed binaries, to facilitate the loading of
unauthorised self-signed or unsigned bootloader images.

AS5 Non-secure world privileged access: use a particular attack to gain control of the kernel
space of the non-secure world. This enables privileged access to other valuable targets,
including device applications in lower protection levels, device drivers, and memory man-
agement.

AS6 AES key recovery: perform secret key recovery against an encryption/decryption system
that uses the Advanced Encryption Standard (AES). As shown in Chapter 2, AES is often
used in full-disk encryption and TEE secure world key binding. The reader is referred back
to the respective publication in case a particular mode of operation is targeted in the state
of the art, e.g., Electronic Code Book (ECB) and Cipher Block Chaining (CBC).

AS7 RSA key recovery: perform private key recovery against a security system that uses the
RSA algorithm for decryption and digital signature signing. RSA signatures are used widely
for data authentication, including bootloader verification during secure boot sequences.
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AS8 ECC key recovery: perform private key recovery against a security system that uses elliptic
curve cryptography (ECC) for decryption and digital signature signing. In particular, the
Elliptic Curve Digital Signature Algorithm (ECDSA) is used widely as an alternative to the
RSA algorithm.

AS9 Bypass verification checks: bypass other run-time security verification steps, such as
RSA and ECC signature verification.

AS10 Load unauthorised data into memory: corrupt the device’s data flow integrity protections
to load unauthorised data items, such as a cryptographic keys, during program execution.

AS11 Key resetting: perform run-time bit reset attacks on part or all of a cryptographic key to
disrupt the security system under investigation.

AS12 Reverse engineering: understand the internal operations of black-box software or firmware
executing on the device.

AS13 Mixed-signal system-on-chips (SoCs): perform dedicated attacks against devices with
mixed-signal SoCs. Such attacks leverage perturbations in analog device signals from co-
located security-critical digital components (or vice-versa).

AS14 Devices with 1Ghz+ clock frequency: perform a particular attack against devices with
high-frequency CPUs (over 1GHz clock frequency), which has been experimentally verified.

AS15 Devices with multi-core architectures: perform a particular attack against devices with
multi-core CPUs, which has been experimentally verified.

5.3 Challenges and Limitations

In the following sections, challenges and limitations of existing SCA and FIA research is identified
and discussed.

5.3.1 Fault Injection Attacks

Low Success Rates

A significant limitation of some voltage- and clock-based FIs is that exploitable faults can be
generated at a very low rate. In several works, such faults are generated at a rate of <1% of all
faults during experimental analysis [122, 123, 33]. This leads to a practicality question: an attack
technique could be economically unviable if the cost/time to launch a single fault is significant
and a large number of faults are required. A related concern is that some methods require
collecting a substantially large set of ciphertexts, which could be impractical depending on the
target application. For example, [26] requires up to 2M ciphertexts to perform AES key recovery.
Similarly, work in [40] requires AES encryptions to be performed multiple times under the same
message and key. This is reasonable if the examiner can replicate these conditions and rapidly
inject the fault, otherwise it is likely to suffer the same practical constraints.
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Risk of Device Damage

An overarching issue with FIAs is the risk of irreparably destroying the device under test, thus
losing any data of interest to the examiner. By definition, such attacks leverage unexpected be-
haviour when the device is subjected to conditions beyond the manufacturer’s guidelines. This is
likely to occur during the search process of identifying effective glitch parameters for fault char-
acterisation, shown previously in Figure 3.3 in Chapter 3 for clock glitch attacks. In particular,
extreme over- or under-volting, also known as ‘over-glitching’, can inflict permanent and unpre-
dictable damage on device components, sometimes in ways that are not immediately observ-
able [28].

FIA Countermeasures

A range of hardware- and software-based countermeasures to FI attacks have been developed
and deployed in recent years. In hardware, DC power filters have been known to provide effec-
tive defenses against voltage-based FIs for over 20 years since their deployment on commercial
smart cards [68]. While not strictly a security countermeasure, phase-locked loop (PLL) circuits
have also increased the difficulty of launching clock glitch attacks, which processes the external
clock into the internal CPU clock frequency [113]. Dedicated frequency detection circuits have
also been proposed for hardware clock glitches [24], while hardware frequency locking can be de-
ployed to thwart software-based clock glitch attacks like CLKScrew [120]. In the case of EMFIs,
tamper-resistant EM shielding can be used to minimise EM emissions during execution, while
on-board device sensors have been shown to be an effective method for detecting heating-based
FIAs [10].

Several software countermeasures are also known widely in the literature. These include double
or multiple checks of security-critical procedures, such as signature verification, that force the
attacker to perform several FIAs to bypass a particular check. Other redundancies have been
proposed in software and in hardware for computing the same result multiple times and check-
ing their equivalence, as well as execution and timing randomisation [24]. As stated previously,
published research papers do not typically consider a wide range of hardware and software coun-
termeasures, which may limit their applicability. An observation is that these countermeasures
generally increase the difficulty of performing FIAs and do not thwart them definitively.

5.3.2 Side-Channel Attacks

Inaccessible Hardware

Hardware access is a major challenge to conducting certain classes of SCAs on mobile devices,
especially power-based SCAs. Voltage supply pins are not easily accessible on modern SoCs
because the pins are occluded by the package itself. Invasive techniques are thus required just to
investigate the feasibility of an attack, let alone execute one successfully. Moreover, conducting
power analysis on BGA packages requires specialist equipment and expertise in itself, which in-
creases the attack complexity significantly [21]. It is likely for this reason that security researchers
have tended to focus on power-based SCAs on platforms with easily accessible supply pins, such
as single-board computers (SBCs) and microcontroller units.
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SCA Countermeasures

Similar to FIAs, software and hardware countermeasures to side-channel attacks have been
well-studied in the literature. Introducing randomness into the program execution and the clock
frequency are both common defense hardware strategies. Constant-time operations, such as
the ECC Montgomery ladder, are the main software countermeasure, which do not leak secret-
dependent information. Masked implementations of AES device are another countermeasure to
defend against differential power analysis attacks; however, work already in this report shows that
these can still be attacked, albeit with greater complexity. EM shielding can provide an effective
defense against exploitable EM emissions, such as Faraday cage packages [104]. Although these
countermeasures are widely known, researchers have still tended to focus on unprotected hard-
ware and software in recent years. For example, [67] attacks double-and-sometimes-add ECC,
which is known to be side-channel vulnerable. Consequently, it is likely that difficulties will be
faced by security researchers in replicating such work against practical systems and well-known
cryptographic libraries that contain side-channel countermeasures.

5.3.3 Discussion

During the research of this report, one immediate limitation of FIAs and SCAs is the extent to
which published attacks and methods can be generalised to other evaluation platforms. This
includes those that have not yet reached the marketplace. Published research is typically con-
strained to a small set of evaluation platforms; often only a single target is used, as is the case
with >80% state-of-the-art FIA and >60% SCA works. Differences in processor architectures,
power management systems/voltage regulators, and external clocks may significantly affect at-
tack feasibility to the point of being ineffective. As such, it is potentially the case that the success
rates/criteria of published techniques—as shown in Tables 5.1 and 5.2—may represent a best-
case scenario if alternative platforms are under test.

Besides the tendency for researchers to evaluate a small set of test devices, another limitation
is the heavy use of custom device triggers integrated in the target implementation. The vast
majority of FIAs, as shown in Table 5.1, require a custom trigger from the device to perform the
fault injection, as do a large number of SCA works. Such triggers are unlikely to exist, or can be
easily integrated, into implementations on commercial devices. Related to this is the reluctance
for authors to publicly publish their custom implementations. This is further compounded by the
lack of publicly available data sheets regarding modern mobile devices and their components,
e.g., SoCs, As such, a forensic analyst may encounter great difficulty in replicating attacks on
off-the-shelf devices.

Furthermore, methodological issues have also been identified as a source of reproducibility is-
sues. Benadjila et al. [30] state that, for the most advanced SCAs, the data analysis framework is
often not published: “hyperparameterisation [of machine learning models] has often been kept se-
cret by the authors who only discussed the main design principles and on the attack efficiencies”.
The disclosure of model hyperparameters is a key step towards reproducing published results.
Furthermore, Wang et al. [131] showed that the effectiveness of machine and deep learning
based SCAs can vary severely between devices. They show experimentally that a model that is
trained on power traces for performing key recovery from one board does not generalise to oth-
ers, even those with the same ICs. More specifically, a DL model with a purported 96% accuracy
drops to only 2.45% when tested on traces captured from another board with the same IC. Lastly,
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it is observed that many authors simply do not disclose the devices under test [1, 57, 67, 91].
In many cases, only high-level details are shared, e.g., “an Android smartphone” [91] or a “4G
LTE smart phone from a major manufacturer” [67]. Obscuring precise platform information can
significantly hinder reproducibility significantly if the attack approach does not generalise well.

The prevalence of ever-more advanced processor architectures also continues to be a major
barrier to SCAs and FIAs. Multi-core, high-frequency CPUs with complex instruction pipelines
and memory management have increased attack complexity significantly over the past 10 years
[1, 47, 91]. For FIAs, it necessitates the injection of extremely precise faults during program exe-
cution, which is limited by the precision of the testing equipment being used. Similarly, for SCAs,
the researcher must account for context switching, garbage collectors, virtualisation, multi-stage
pipelines, and other features that can disrupt the collection of exploitable power and EM traces.
In particular, we are not aware of any attacks on complex PoP SoCs where multiple packages are
integrated into a single unit. The growing utilisation of TEEs complicates this further, which share
the same physical hardware as the native OS in a time-sliced fashion. Consequently, today’s
security researcher faces several barriers when accounting for parallel execution if only a single
application is of interest.

Finally, we observe that several previously effective methods on constrained devices, such as
microcontrollers, have found limited utility on mobile devices. Heating fault injections, power anal-
ysis, EMFIs, and clock glitches in particular have not been widely applicable to mobile devices.
The wide deployment of PLL circuits that separate the device’s internal clock from its external
clock, the difficulty in accessing supply voltage pins to measure power consumption, and com-
plex high-frequency SoCs that make it difficult to introduce faults successfully have contributed to
this trend [44, 91, 113].

5.4 Future Directions

Deep learning-based approaches to side-channel analysis have rose to prominence in the last
12-24 months. These methods enable complex feature extraction from underlying data, such as
power traces, and the ability to model highly non-linear interactions for classification. This is in
contrast to traditional statistical methods that use carefully chosen parametric models. At present,
DL-based SCAs are attracting significant attention by researchers, with promising results being
presented in leading security conferences and journals. It is likely that this trend will persist given
the new avenues it opens for EM- and power-based SCAs without defining highly bespoke statis-
tical models.

The growth of mixed-signal and multi-SoC architectures are an important development in the de-
velopment of fault injection and side-channel attacks on mobile devices. Recent research, e.g.
[37] and [56], has shown that these can offer new attack vectors into recovering secret data.
Given the economic incentives to shrink device hardware into ever-more compact units, it is likely
that this trend will continue, and that new attack avenues may be opened from the interaction be-
tween increasingly diverse on-SoC components. In parallel, manufacturers continue to delegate
long-running but low-complexity device features, such as sensor hubs, to separate device SoCs.
This allows the primary SoC with the device’s application processor to remain in a low-powered
state while low-complexity processing is handled by a less energy-intensive SoC. Similarly, the
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interaction between subsystem SoCs could offer new attack vectors in future research.

Security practitioners should also be aware of emerging methods and applications of using mo-
bile TEEs, a multitude of which have been published in recent research. Examples include secure
mobile-based deep learning [73], authenticating mobile adverts from advertising networks [76],
protecting system log integrity [115, 66], new paradigms of remote TEE-to-TEE communica-
tion [116, 117], securing health-related data [112], confidential image processing [35], and ex-
ecuting cryptocurrency wallet operations [49]. These proposals could influence commercial ser-
vices that store and process high-value assets, and may serve as future attack targets.
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Chapter 6

Conclusion

The difficulty of mobile data extraction and analysis methods has increased significantly due to
the growing complexity of today’s mobile platforms and the increased focus on security. From a
hardware perspective, the development of system-on-chips with multi-core CPUs, gigahertz clock
speeds, and hardware security extensions contribute to this trend. From a software viewpoint, the
widespread deployment of full-disk encryption, secure boot chains, and TEEs to protect poten-
tially valuable evidence are all major barriers to forensic investigations.

This report has presented an extensive survey of the state of the art in physical fault injection
and side-channel attacks, or FIAs and SCAs respectively. These techniques can be conducted
without full knowledge of the information that is used to protect device data on today’s devices,
such as user authentication codes to deactivate full-disk encryption and decrypt TEE-resident
data. Over 40 research publications were examined, published between 2009 and 2020, from
which 15 attack scenarios were drawn. Each research publication has been individually mapped
to the relevant attack scenario, alongside any prerequisites, the evaluated platforms, and their
published success rates.

It is hoped that his report provides an informative and comprehensive summary of the applica-
bility of state-of-the-art attacks on today’s mobile devices. Moreover, this report presented some
challenges and limitations pertaining to FIAs and SCAs. In particular, it has been shown that
the reproducibility of attacks remains an issue, while low success rates and a small number of
evaluated platforms could lead to generalisation issues on new and alternative devices. Further-
more, it was discussed that much research does not take into consideration a large suite of FIA
or SCA countermeasures that may be used on today’s mobile devices. Lastly, future directions
were provided to inform the reader of potential developments in the state of the art.
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Chapter 7

List of Abbreviations

Abbreviation Translation
AES Advanced Encryption Standard
ADC Analog-to-Digital Converter
AP Application Processor
API Application Programming Interface
ART Android Runtime
ASIC Application Specific Integrated Circuit
BGA Ball Grid Array
BP Baseband Processor
CBC Cipher Block Chaining
CNN Convolutional Neural Network
CPU Central Processing Unit
CRT Chinese Remainder Theorem
DES Data Encryption Standard
DL Deep Learning
DPA Differential Power Analysis
DSP Digital Signal Processor
DVFS Dynamic Voltage and Frequency Scaling
ECB Electronic Code Book
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellmann
ECDSA Elliptic Curve Digital Signature Algorithm
EM Electromagnetic
EMFI Electromagnetic Fault Injection
eMMC Embedded Multi-Media Card
FDE Full-Disk Encryption
FIA Fault Injection Attack
FPGA Field-Programmable Gate Array
GPIO General-Purpose Input/Output
GPU Graphics Processing Unit
HMAC Hash-based Message Authentication Code
HUK Hardware Unique Key
I/O Input/Output
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Abbreviation Translation
I2C Inter-Integrated Circuit
IC Integrated Circuit
IP Intellectual Property
JTAG Joint Test Action Group
KDF Key Derivation Function
LEA Law Enforcement Agency
ML Machine Learning
MMU Memory Management Unit
NFC Near-Field Communication
OEM Original Equipment Manufacturer
OS Operating System
PCB Printed Circuit Board
PLL Phase-Locked Loop
PoP Package-on-Package
POST Power-On Self-Test
RAM Random Access Memory
REE Rich Execution Environment
RFID Radio-Frequency Identification
ROM Read-Only Memory
RoT Root of Trust
RSA Rivest–Shamir–Adleman
RTOS Real-Time Operating System
SCA Side-Channel Attack
SEP Secure Enclave Processor
SGX Software Guard Extensions
SoC System-On-Chip
SPA Simple Power Analysis
SPI Serial Peripheral Interface
TA Trusted Application
TEE Trusted Execution Environment
TOE Target Of Evaluation
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
XEX Xor-Encrypt-Xor
XTS XEX-based Tweaked-Codebook Mode With Ciphertext Stealing

EXFILES D5.1 Public Page 48 of 58



D5.1 - Vulnerabilities Analysis and Attack Scenarios Description

Bibliography

[1] Driss Aboulkassimi, Michel Agoyan, Laurent Freund, Jacques Fournier, Bruno Robisson,
and Assia Tria. Electromagnetic analysis (EMA) of software AES on Java mobile phones.
In 2011 IEEE International Workshop on Information Forensics and Security, pages 1–6.
IEEE, 2011.

[2] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and Assia Tria.
When clocks fail: On critical paths and clock faults. In International Conference on Smart
Card Research and Advanced Applications, pages 182–193. Springer, 2010.

[3] Monjur Alam, Haider Adnan Khan, Moumita Dey, Nishith Sinha, Robert Callan, Alenka Za-
jic, and Milos Prvulovic. One&Done: A single-decryption EM-based attack on OpenSSL’s
constant-time blinded RSA. In 27th USENIX Security Symposium (USENIX Security 18),
pages 585–602, 2018.

[4] Anandtech. Samsung Announces Exynos 980, 2019. https://www.anandtech.com/

show/14829/samsung-announces-exynos-980-midrange-with-integrated-5g-modem.

[5] Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices. In Inter-
national Workshop on Security Protocols, pages 125–136. Springer, 1997.

[6] Android. Full-disk encryption, 2020. https://source.android.com/security/

encryption/full-disk.

[7] Android. Gatekeeper, 2020. https://source.android.com/security/

authentication/gatekeeper.

[8] Android. Keystore System, 2020. https://developer.android.com/training/

articles/keystore.

[9] Android. Platform Architecture, 2020. https://developer.android.com/guide/

platform.

[10] Md Toufiq Hasan Anik, Jean-Luc Danger, Sylvain Guilley, and Naghmeh Karimi. Detecting
failures and attacks via digital sensors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

[11] Apple, Inc. iOS Security: iOS 11, 2018. https://www.apple.com/ca/business-docs/

iOS_Security_Guide.pdf.

[12] Apple, Inc. Apple Platform Security, 2020. https://manuals.info.apple.com/MANUALS/
1000/MA1902/en_US/apple-platform-security-guide.pdf.

EXFILES D5.1 Public Page 49 of 58

https://www.anandtech.com/show/14829/samsung-announces-exynos-980-midrange-with-integrated-5g-modem
https://www.anandtech.com/show/14829/samsung-announces-exynos-980-midrange-with-integrated-5g-modem
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/authentication/gatekeeper
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://www.apple.com/ca/business-docs/iOS_Security_Guide.pdf
https://www.apple.com/ca/business-docs/iOS_Security_Guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf


D5.1 - Vulnerabilities Analysis and Attack Scenarios Description
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